

Question Paper for Internal Assessment Examination (Theory) - Credit 4

Instructions for Students/Faculty: Mid Term I (Total 80 Marks, 2 HRS. Syllabus from Unit-1)

- Part A: Total number of questions to be given are ten (5 from CO1 and 5 from CO2), each carrying 2 marks and are compulsory to attend. There is no choice. They are short answer type questions (Not More Than 25 Words for both Question & Answer), no objective type or fill in the blanks. Total 20 marks.
- Part B: Total number of questions to be given are six (3 from CO1 and 3 from CO2), out of which student must answer four (2 from CO1 and 2 from CO2). They are long answer type (Not More Than 50 Words for Question), each carrying 5 marks. Total 20 marks.
- Part C: Total number of questions to be given are six (3 from CO1 and 3 from CO2), out of which student must answer four (2 from CO1 and 2 from CO2). They are numerical answer type / fully elaborative type (Not More Than 70 Words for Question) *, each carrying 10 marks. Total 40 marks.

Mid Term II (Total 120 Marks, 2.5 HRS., Syllabus from Unit-2)

- Part A: Total number of questions to be given are ten (5 from CO3 and 5 from CO4), each carrying 4 marks and are compulsory to attend. There is no choice. They are short answer type questions (**Not More Than 25 Words for both Question & Answer**), no objective type or fill in the blanks. Total 40 marks.
- Part B: Total number of questions to be given are six (3 from CO3 and 3 from CO4), out of which student has to answer four (2 from CO3 and 2 from CO4). They are long answer type (Not More Than 50 Words for Question), each carrying 7 marks. Total 28 marks.
- Part C: Total number of questions to be given are six (3 from CO3 and 3 from CO4), out of which student has to answer four (2 from CO3 and 2 from CO4). They are numerical answer type / fully elaborative type (Not More Than 70 Words for Question) *, each carrying 13 marks. Total 52 marks.

Mid Term III (Total 120 Marks, 2.5 HRS., Syllabus from Unit-3)

- Part A: Total number of questions to be given are ten (5 from CO5 and 5 from CO6), each carrying 4 marks and are compulsory to attend. There is no choice. They are short answer type questions (Not More Than 25 Words for both Question & Answer), no objective type or fill in the blanks. Total 40 marks.
- Part B: Total number of questions to be given are six (3 from CO5 and 3 from CO6), out of which student must answer four (2 from CO5 and 2 from CO6). They are long answer type (Not More Than 50 Words for Question), each carrying 7 marks. Total 28 marks.

Part C: Total number of questions to be given are six (3 from CO5 and 3 from CO6), out of which student must answer four (2 from CO5 and 2 from CO6). They are numerical answer type / fully elaborative type (Not More Than 70 Words for Question) *, each carrying 13 marks. Total 52 marks.

* LIST OF ELABORATIVE THEORY QUESTION SUBJECTS: NO SUBJECT UNDER CREDIT FOUR

Instructions for Faculties:

There should be total 6 Course Outcomes (COs) for each subject.

- Mid Term Question Papers are to be submitted as per Course Outcomes (COs) which should be divided equally in Part A, Part B and Part C according to Mid Term Examination and Credit Point.
- In Mid Term-1, the questions are to be given from CO1 and CO2. In Mid Term-2, the questions are to be given from CO3 and CO4. Similarly, in Mid Term-3, the questions are to be given from CO5 and CO6.
- FACULTY MEMBERS, PLEASE ENSURE EXCEPT ABOVE LISTED SUBJECTS, NO THEORITICAL ELABORATIVE QUESTION SHOULD BE GIVEN IN PART 'C' OF QUESTION PAPER

INSTRUCTION FOR STUDENTS

• STUDENT IS ALLOWED TO ENTER LATE NOT MORE THAN 15 MIN AFTER STARTING OF EXAM, AND MAY LEAVE THE EXAM HALL ON EXPIRY OF ATLEAST OF 1 Hr FROM THE STARTING TIME OF EXAMINATION.

QUESTION PAPER AND STUDENTS DETAILS

Type of Exam	Mid Term 2	Date of Submission	16-01-2021 7:39 PM
Name of Faculty	SAPANA THAKUR	Date of Examination	1-Feb-21
Course	B.Tech	Semester	Semester 1
Batch	AE-20 AND MT-6	Subject	1FY-01 Engineering Mathematics I (Cr 4)

COURSE OUTCOMES FOR REFERENCE TO FRAME QUESTION PAPER

(Faculties are required to mention relevant Course Outcome number against the respective question in QP)

Course Objective :

- 1. To develop the use of Integral Calculus techniques that is needed by engineers for practical applications.
- 2. To make the students appreciate the purpose of using Sequences

	 and Series to solve engineering problems. 3. To familiarize the student with functions of Fourier Series. This is needed in many branches of engineering. 4. To make the students understand various techniques of Multivariable Calculus differentiation. 5. To acquaint the student with mathematical tools needed in evaluating Multivariable Calculus integration and their applications. 6. To gain knowledge on primary level of Engineering mathematics and its application that they would find useful in their disciplines. 		
Course Outcome :	 CO 1. Use the Integral Calculus techniques methods for solving practical problems. CO 2. Manipulate different methods of Multivariable Calculus differentiation in solving practical problems. CO 3. Appreciate Multivariable Calculus integration ideas in solving practical problems. CO 4. Make use of mathematical ideas to solve the practical problems in the society. CO 5. Apply Sequences and Series tools in solving various application problems. CO 6. Obtain Fourier Series ideas on several variable functions 		
Email I'd	sapnathakur@soaneemrana.org	Phone No.	8823094838
Student Name		Student Reg No.	
Part A			
All the questions	All the questions are compulsory to attend.		
FOR MIDTERM 1 - Part A : Total number of questions to be given are ten (5 from CO1 and 5 from CO2), each carrying 2 marks and are compulsory to attend. There is no choice. FOR MIDTERM 2 - Part A : Total number of questions to be given are ten (5 from CO3 and 5 from CO4), each carrying 2 marks and are compulsory to attend. There is no choice. FOR MIDTERM 3 - Part A : Total number of questions to be given are ten (5 from CO5 and 5 from CO6), each carrying 2 marks and are compulsory to attend. There is no choice.			
1. WRITE COURSE OUTCOME (CO) NUMBER ACCORDING TO THE TYPE OF MIDTERM, AS PER INSTRUCTIONS ABOVE.			
Question: 1 Evaluate $\int_{-1}^{1} \int_{0}^{2} \int_{0}^{3} 3x \ dxdydz$			

Lesson Plan No.: 13	Topic: Integral calculus	Source: By H.K.Das	
Question: 2	Evaluate $\int_0^1 \int_0^2 (x+y)dx dy$		
Lesson Plan No.:11	Topic: Integral calculus	Source: By H.K.Das	
Question: 3	Evaluate $\int_0^1 \int_0^x sinx siny dx dy$		
Lesson Plan No.:11	Topic: Integral calculus	Source: By H.K.Das	
Question: 4	How to change the order of integration		
Lesson Plan No.:15	Topic: Integral calculus	Source: By H.K.Das	
Question: 5	What is the difference between double and triple integration		
Lesson Plan No.: 12	Topic: Integral calculus	Source: By H.K.Das	
	2. WRITE COURSE OUTCOME (CO) NUMBER ACCORDING TO THE TYPE OF MIDTERM, AS PER INSTRUCTIONS ABOVE.		
Question: 6	Prove that $\beta(m,n)=\beta(n.m)$		
Lesson Plan No.: 21	Topic: Beta and gamma	Source: By H.K.Das	
Question: 7	Write the Duplication formula		
Lesson Plan No.: 24	Topic: Beta and gamma	Source: By H.K.Das	
Question: 8	Define Beta and Gamma function		
Lesson Plan No.:21	Topic: Beta and gamma	Source: By H.K.Das	
Question: 9	Evaluate $\int_0^1 x^3 (1-x)^5 dx$		

Lesson Plan No.:21	Topic: Beta and gamma	Source: By H.K.Das
Question: 10	Express in terms of Beta of $\int_0^\infty \frac{x^5}{(1+x)^9} dx$	
Lesson Plan No.: 21	Topic: Beta and gamma	Source: By H.K.Das

Part B

FOR MIDTERM 1 - Part B: Total number of questions to be given are six (3 from CO1 and 3 from CO2), out of which student must answer four (2 from CO1 and 2 from CO2). FOR MIDTERM 2 - Part B: Total number of questions to be given are six (3 from CO3 and 3 from CO4), out of which student must answer four (2 from CO3 and 2 from CO4). FOR MIDTERM 3 - Part B: Total number of questions to be given are six (3 from CO5 and 3 from CO6), out of which student has to answer four (2 from CO5 and 2 from CO6).

3. WRITE COURSE OUTCOME (CO) NUMBER ACCORDING TO THE

CO 4

TYPE OF MIDTE	RM, AS PER INSTRUCTIONS ABOVE.	CO 4	
Question: 1	Evaluate $\int_0^\infty e^{-x^2} dx$		
Lesson Plan No.: 28	Topic: Beta and gamma	Source: By H.K.Das	
Question: 2	Evaluate $\int_0^{\frac{\pi}{2}} \sin^3 \theta \cos^2 \theta \ d\theta$		
Lesson Plan No.: 27	Topic: Beta and gamma Source: By H.K.Das		
Question: 3	Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{\cos x} \ dx$		
Lesson Plan No.:27	Topic: Beta and gamma	Source: By H.K.Das	
	RSE OUTCOME (CO) NUMBER ACCORDING TO THE RM, AS PER INSTRUCTIONS ABOVE.	CO 3	
Question: 4	Evaluate $\int_0^1 \int_0^{\log y} 3e^{x+2y} dx dy$		
Lesson Plan No.:12	Topic: Integral calculus	Source: By H.K.Das	
Question: 5	Using by change of order solve $\int_0^2 \int_y^2 \frac{x}{x^2 + y^2} dx dy$		

Lesson Plan No.:15	Topic: Integral calculus	Source: By H.K.Das
Question: 6	Evaluate $\iiint 2(x-y-z) dx dy dz$ which is bounded by $x=\pm 2, y=\pm 4$, $z=\pm 6$	
Lesson Plan No.: 12	Topic: Integral calculus	Source: By H.K.Das

Part C

FOR MIDTERM 1 - Part C: Total number of questions to be given are six (3 from CO1 and 3 from CO2), out of which student must answer four (2 from CO1 and 2 from CO2). **FOR MIDTERM 2 - Part C**: Total number of questions to be given are six (3 from CO3 and 3 from CO4), out of which student must answer four (2 from CO3 and 2 from CO4). **FOR MIDTERM 3 - Part C**: Total number of questions to be given are six (3 from CO5 and 3 from CO6), out of which student has to answer four (2 from CO5 and 2 from CO6).

	RSE OUTCOME (CO) NUMBER ACCORDING TO THE RM, AS PER INSTRUCTIONS ABOVE.	CO 3	
Question: 1	Using by change of order solve $\int_0^1 \int_0^{2-x} \frac{x}{y} dx dy$		
esson Plan No.: 15	Topic: Integral calculus	Source: By H.K.Das	
Question: 2	Evaluate $\int_0^1 \int_0^x \int_0^{1-x-y} 3x \ dx dy dz$		
Lesson Plan No.:13	Topic: Integral calculus	Source: By H.K.Das	
Question: 3	Find the area of $\iint_R \frac{2x\ dxdy\ where\ R\ is\ bounded\ by\ x=0\ ,y=0\ ,}{y=x}$		
Lesson Plan No.:12	Topic: Integral calculus	Source: By H.K.Das	
	RSE OUTCOME (CO) NUMBER ACCORDING TO THE RM, AS PER INSTRUCTIONS ABOVE.	CO 4	
Question: 4	If force $\overrightarrow{F} = x^2y \ \overrightarrow{i} + 2y \ \overrightarrow{j}$ in xy-plane from (0,0) to (1,2) a $y = x$ then find the work done	along the curve	

Lesson Plan No.:16	Topic: Integral calculus		Source: By H.K.Das
Question: 5	Using by Green's theorem Evaluate \oint bounded by $y = x$ and $y = x^2$	F. dr if $\overrightarrow{F} = 2 xy \hat{i}$	$+ x^2 y \hat{j}$ which is
Lesson Plan No.:18	Topic: Integral calculus Source: By H.K.Das		_
Question: 6	Find $\oiint F \cdot \widehat{N}$ ds where $\overrightarrow{F} = \widehat{i}$ — the first octant	$\widehat{j} + \widehat{k}$ which is boun	ided by x+y+z =1 in
Lesson Plan No.: 17	Topic: Integral calculus		Source: By H.K.Das
Numerical or D Questions. (Me	ed Document in Case of Diagram for Any of the Above Intion question number with merical / equations. Max 150 KB)		
	zed the question paper. There mistake or any type of stion.		