School of Aeronautics (Neemrana)

Paper For Internal Assessment Examination (Theory) - Credit 4

Instructions For Students / Faculty Mid Term I (Total 80 Marks, 2 hrs.)

- Part A: Total number of questions to be given are ten, each carrying 2 marks and are compulsory to attend. There is no choice. They are short answer type questions (**Not More Than 25 Words For both Question & Answer**), no objective type or fill in the blanks. Total 20 marks.
- Part B: Total number of questions to be given are six, out of which student has to answer any four. They are long answer type (Not More Than 50 Words for Question), each carrying 6 marks. Total 24 marks.
- Part C: Total number of questions to be given are four, out of which student has to answer any three. They are numerical answer type / fully elaborative type (**Not More Than 70 Words For Question**)*, each carrying 12 marks. Total 36 marks.

Mid Term II & III (Total 120 Marks, 2.5 hrs.)

- Part A: Total number of questions to be given are ten, each carrying 2 marks and are compulsory to attend. There is no choice. They are short answer type questions (Not More Than 25 Words For both Question & Answer), no objective type or fill in the blanks. Total 20 marks
- Part B: Total number of questions to be given are seven, out of which student has to answer any five. They are long answer type (Not More Than 50 Words For Question), each carrying 8 marks. Total 40 marks.
- Part C: Total number of questions to be given are five, out of which student has to answer any four. They are numerical answer type / fully elaborative type (**Not More Than 70 Words For Question**)*, each carrying 15 marks. Total 60 marks.

* LIST OF ELABORATIVE THEORY QUESTION SUBJECTS: Communication Skills, Human Values, Technical Communication, Managerial Economics and Financial, Aircraft Materials and Processes, Aircraft Systems, Aircraft Maintenance Practices, Avionics-I, Aircraft Rules and Regulation, Wind Tunnel Techniques, Maintenance of Airframe and System, Helicopter Theory, Avionics-II, Maintenance of Power Plant and System, Unmanned Aerial Vehicles & Systems (UAV), Space Mission Design & Optimization, CAD, Airlines and Airport Management.

FACULTY MEMBERS, PLEASE ENSURE EXCEPT ABOVE LISTED SUBJECTS, NO THEORITICAL ELABORATIVE QUESTION SHOULD BE GIVEN IN PART 'C' OF QUESTION PAPER

Question Paper & Student Details

Mid Term *		MID TERM 1	Date of Submission of QP		10/26/2020
Name of Faculty *		SAPANA THAKUR	Date of Examination *		27/10/2020
Subject *	1FY2-01	: Engineering Mathematics	Course*	B.Tech	
Batch		AE and MT	Semester *	3	
Email Id of Faculty:* Sap		Sapanathakur1990@gmail.com	Phone Number of Faculty*		8823094838

Student Name Student Reg No.

1FY2-01 : Engineering Mathematics (Credit-4) COURSE OBJECTIVE

1. The objective of this course is to familiarize the prospective engineers with techniques in calculus, sequences and series Fourier

series, its tools to use the advance mathematics.

2. Multivariable analysis to differentiation and its tools to various segments in engineering mathematics and its application

3. Multivariable analysis to vector calculus and its tools to various segments in engineering mathematics and its application

4. It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards

tackling more

5. Advanced level of mathematics and applications that they would find useful in in their disciplines.

1FY2-01 : Engineering Mathematics (Credit-4) COURSE OUTCOME

Upon completion of the course, Students will be able to

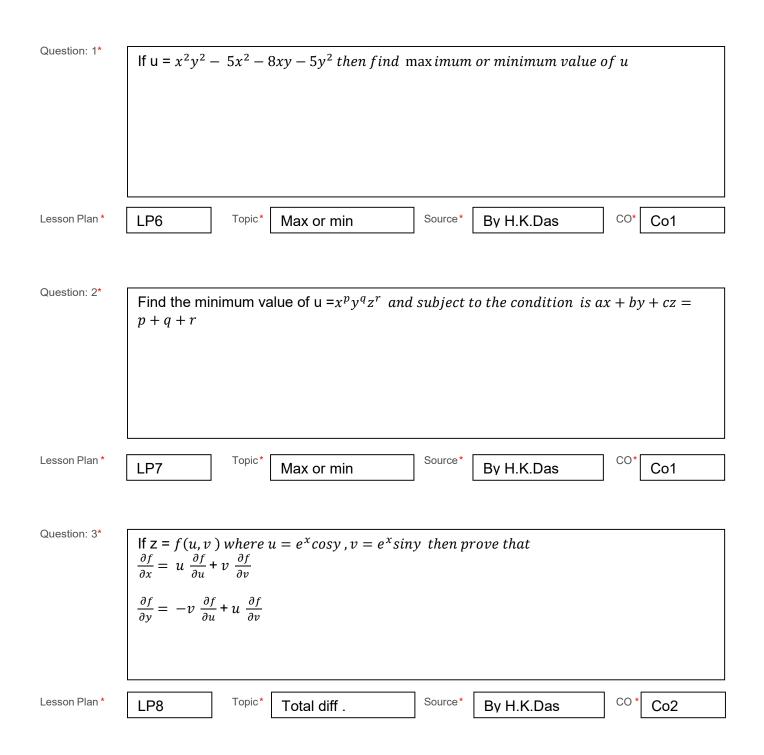
CO1. To be able to apply the fundamental application in finding out the solution of maxima and minima of engineering problems and the fallouts of Lagrange multipliers. CO2. To be able deal with functions of several variables essential required in almost all branches of engineering.

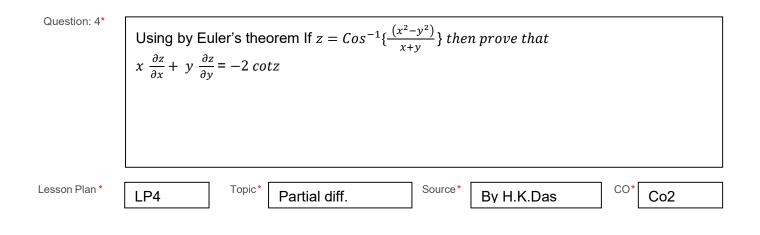
CO3. Capable to apply the use of essential tools of multiple integrals and vector calculus in Engineering fields.

CO4.To be able to apply differential and integral calculus to notation of a definite integrals and to improper integrals.

CO5. Understand the applications of Beta and Gamma functions.

CO6. Able to understand the tool of power series and Fourier series for learning advanced Engineering mathematics


PART : A


Question: 1	Why we us	e the grad	dient and divergence a	ind curl fo	or the problems of ve	ectors	
Lesson Plan *	LP10	Topic*	Vectors	Source*	By H.K.Das	CO*	Co3
Question: 2*	What is the	differenc	e between limit of fund	ction and	continuity of functior	1	
Lesson Plan *	LP1	Topic*	Limit & continuity	Source*	By H.K.Das	CO*	Co2
Question: 3*	What is uni	t vector a	nd directional derivativ	/e			
Lesson Plan *	LP9	Topic*	Vectors	Source*	By H.K.Das	CO*	Co3
Question: 4*	What are th	e conditio	on for irrotational vecto	or and so	lenoidal vector		
Lesson Plan *	L10	Topic*	Vectors	Source*	By H.K.Das	CO*	Co3
Question: 5*	What is the	differenc	e between partial and	total diffe	erentiation		
Lesson Plan *	LP3	Topic*	Partial diff.	Source*	By H.K.Das	CO*	Co2
Question: 6*	What is the	necessa	ry condition for Euler's	theorem			
Lesson Plan *	LP5	Topic*	Partial diff.	Source*	By H.K.Das	CO*	Co2

Question: 7*	What is the necessary condition for maxima and minima
Lesson Plan *	LP6 Topic* Max or min Source* By H.K.Das CO* Co1
Question: 8*	What is the difference between stationary and saddle point
Lesson Plan *	LP6 Topic* Max or min Source* By H.K.Das CO* Co1
Question: 9*	Find $\lim_{y \to 3} \{\frac{2x+3}{x^3-4y^3}\}$
Lesson Plan *	LP1 Topic* Limit Source* By H.K.Das CO* Co2
Question: 10*	Test the continuity for $f(x,y) = \begin{cases} \frac{xy}{2x^2+3y^2} & when \ x = 0 \ and \ y \neq 0 \\ 0 & when \ x = 0 \ and \ y = 0 \end{cases}$
Lesson Plan *	LP2 Topic* Continuity Source* By H.K.Das CO* Co2
PART : B	
Question: 1*	if $z = x^2 \tan^{-1} \frac{y}{x} - y^2 \tan^{-1} \frac{x}{y}$ then prove that $\frac{\partial^2 z}{\partial y \partial x} = \frac{x^2 - y^2}{x^2 + y^2}$
Lesson Plan *	LP3 Topic* Partial derivative Source* By H.K.Das CO* Co2

Question: 2*	Find the directional derivative of $f(x,y,z) = 2yz + 3x^2z$ at $(-1,0,1)$ in the direction of $12\hat{i} + 5\hat{j} + 54\hat{k}$
Lesson Plan *	LP9 Topic* Vectors Source* By H.K.Das CO* Co3
Question: 3*	If $y = f(x + sint) + g(x - 2t)$ then find $\frac{\partial^2 y}{\partial t^2}$ and $\frac{\partial^2 y}{\partial x^2}$
Lesson Plan *	LP3 Topic* Partial derivative Source* By H.K.Das CO* Co2
Question: 4*	Find the equation of tangent and normal line to the surface xyz= 6 at (1,2,3)
Lesson Plan *	LP8 Topic* Tangent eq. Source* By H.K.Das CO* Co2
Question: 5*	If $u = x^3 + y^3$ where $x = a \cos t^2$, $y = b \sin^3 2t$ then $find \frac{du}{dt}$
Lesson Plan *	LP8 Topic* Total diff. Source* By H.K.Das CO* Co2
Question: 6*	Prove that vector F = $(2x-y^2)$ i+ (y^2+z) j+ $(z-2x)$ k is solenoidal or not
Lesson Plan *	LP10 Topic* Vectors Source* By H.K.Das CO* Co3

PART : C

I have scrutinized the question paper. There is no spelling mistake of any type or irrelevant question.

Faculty's Sign Sapana thakur