

School of Aeronautics (Neemrana)

APPROVED BY DIRECTOR GENERAL OF CIVIL AVIATION, MINISTRY OF CIVIL AVIATION, GOVT OF INDIA APPROVED BY ALLINDIA COUNCIL FOR TECHNICAL EDUCATION & AFFILIALED TO RUASTINAN TECHNICAL UNIVERSITY, KOTA & BIKANER TECHNICAL UNIVERSITY, BIKANER, RUN & MANAGED BY L N VERMA MEMORIAL SOCIETY

Question Paper for Internal Assessment Examination (Theory) - Credit 4

Instructions for Students/Faculty: Mid Term I (Total 80 Marks, 2 HRS. Syllabus from Unit-1)

- Part A: Total number of questions to be given are ten (5 from CO1 and 5 from CO2), each carrying 2 marks and are compulsory to attend. There is no choice. They are short answer type questions (Not More Than 25 Words for both Question & Answer), no objective type or fill in the blanks. Total 20 marks.
- Part B: Total number of questions to be given are six (3 from CO1 and 3 from CO2), out of which student must answer four (2 from CO1 and 2 from CO2). They are long answer type (Not More Than 50 Words for Question), each carrying 5 marks. Total 20 marks.
- Part C: Total number of questions to be given are six (3 from CO1 and 3 from CO2), out of which student must answer four (2 from CO1 and 2 from CO2). They are numerical answer type / fully elaborative type (Not More Than 70 Words for Question) *, each carrying 10 marks. Total 40 marks.

Mid Term II (Total 120 Marks, 2.5 HRS., Syllabus from Unit-2)

- Part A: Total number of questions to be given are ten (5 from CO3 and 5 from CO4), each carrying 4 marks and are compulsory to attend. There is no choice. They are short answer type questions (Not More Than 25 Words for both Question & Answer), no objective type or fill in the blanks. Total 40 marks.
- Part B: Total number of questions to be given are six (3 from CO3 and 3 from CO4), out of which student has to answer four (2 from CO3 and 2 from CO4). They are long answer type (Not More Than 50 Words for Question), each carrying 7 marks. Total 28 marks.
- Part C: Total number of questions to be given are six (3 from CO3 and 3 from CO4), out of which student has to answer four (2 from CO3 and 2 from CO4). They are numerical answer type / fully elaborative type (Not More Than 70 Words for Question) *, each carrying 13 marks. Total 52 marks.

Mid Term III (Total 120 Marks, 2.5 HRS., Syllabus from Unit-3)

- Part A: Total number of questions to be given are ten (5 from CO5 and 5 from CO6), each carrying 4 marks and are compulsory to attend. There is no choice. They are short answer type questions (Not More Than 25 Words for both Question & Answer), no objective type or fill in the blanks. Total 40 marks.
- Part B: Total number of questions to be given are six (3 from CO5 and 3 from CO6), out of which student must answer four (2 from CO5 and 2 from CO6). They are long answer type (Not More Than 50 Words for Question), each carrying 7 marks. Total 28 marks.

• Part C: Total number of questions to be given are six (3 from CO5 and 3 from CO6), out of which student must answer four (2 from CO5 and 2 from CO6). They are numerical answer type / fully elaborative type (Not More Than 70 Words for **Question)** *, each carrying 13 marks. Total 52 marks.

* LIST OF ELABORATIVE THEORY QUESTION SUBJECTS: NO SUBJECT UNDER CREDIT FOUR

Instructions for Faculties:

There should be total 6 Course Outcomes (COs) for each subject.

- Mid Term Question Papers are to be submitted as per Course Outcomes (COs) which should be divided equally in Part A, Part B and Part C according to Mid Term Examination and Credit Point.
- In Mid Term-1, the questions are to be given from CO1 and CO2. In Mid Term-2, the questions are to be given from CO3 and CO4. Similarly, in Mid Term-3, the questions are to be given from CO5 and CO6.
- FACULTY MEMBERS, PLEASE ENSURE EXCEPT ABOVE LISTED SUBJECTS, NO THEORITICAL ELABORATIVE QUESTION SHOULD BE GIVEN IN PART 'C' OF **QUESTION PAPER**

INSTRUCTION FOR STUDENTS

 STUDENT IS ALLOWED TO ENTER LATE NOT MORE THAN 15 MIN AFTER STARTING OF EXAM, AND MAY LEAVE THE EXAM HALL ON EXPIRY OF ATLEAST OF 1 Hr FROM THE STARTING TIME OF EXAMINATION.

QUESTION PAPER AND STODENTS DETAILS			
Type of Exam	Mid Term 1	Date of Submission	22/06/2021
Name of Faculty		Date of Examination	28-Jun-21
Course		Semester	Semester 2
Batch	20, 21, AE-3, MT-6	Subject	2FY2-01 Engineering Mathematics II (Cr 4)

OUESTION DADED AND STUDENTS DETAILS

COURSE OUTCOMES FOR REFERENCE TO FRAME QUESTION PAPER

(Faculties are required to mention relevant Course Outcome number against the respective question in QP)

Course	1. To develop the use of matrix algebra techniques that is needed by
Objective :	engineers for practical applications.

Part A			
Student Name		Student Reg No.	
Email I'd	pankjkumar@soaneemrana.org	Phone No.	8769828628
	solving heat and wave equations a CO 6. Illustrate the different n Equations in solving practical prob	and other practical pro nethods of First orde plems.	oblems. er-Partial Differential
	CO 5. Summarize the Partial Differential Equations- Higher order ideas in		
Course Outcome:	CO 4. Utilize mathematical ideas to solve the practical problems in the society.		
	CO 3. Demonstrate higher order ordinary differential equation ideas on several functions.		
	CO 1. Recall the matrix algebra methods for solving practical problems. CO 2. Select differential equations of first order to solve engineering problems.		
	CO 1 Recall the metric clashes as	othodo for colving and	tical problems
	 4. To gain knowledge on primary level of Engineering mathematics and its application that they would find useful in their disciplines. 5. To make the students understand various techniques of First order-Partia Differential Equations. 6. To acquaint the student with mathematical tools needed in evaluating Partial Differential Equations– Higher order and their applications 		
3. To familiarize the student with functions of ordinary differ of higher orders. This is needed in many branches of enginee			differential equations gineering.
	2. To make the students appreciate the purpose of using differential equations of first order to solve engineering problems.		

FOR MIDTERM 1 - Part A: Total number of questions to be given are ten (5 from CO1 and 5 from CO2), each carrying 2 marks and are compulsory to attend. There is no choice. **FOR MIDTERM 2 - Part A**: Total number of questions to be given are ten (5 from CO3 and

5 from CO4), each carrying 2 marks and are compulsory to attend. There is no choice. **FOR MIDTERM 3 - Part A**: Total number of questions to be given are ten (5 from CO5 and 5 from CO6), each carrying 2 marks and are compulsory to attend. There is no choice.

All the questions are compulsory to attend.

1. WRITE COURSE OUTCOME (CO) NUMBER ACCORDING TO THE TYPE OF MIDTERM, AS PER INSTRUCTIONS ABOVE.

	CO 1	

Question: 1	Define the Diagonal matrix.	
Lesson Plan No: 01	Topic: Matrix	Source: Engg Mathematics-II By Dr. Sanjay Bansal
Question: 2	Define the Hermitian matrix and skew-Hermitian matrix	
Lesson Plan No.:01	Topic: Matrix	Source: Engg Mathematics-II By Dr. Sanjay Bansal
Question: 3	How do you prove a matrix is symmetric?	
Lesson Plan No.:6	Topic: Matrix	Source: Engg Mathematics-II By Dr. Sanjay Bansal
Question: 4	Application of Cayley – Hamilton theorem.	
Lesson Plan No.:8	Topic: Matrix	Source: Engg Mathematics-II By Dr. Sanjay Bansal
Question: 5	Define the orthogonal matrix	
Lesson Plan No.:10	Topic: Matrix	Source: Engg Mathematics-II By Dr. Sanjay Bansal

2. WRITE COUR TYPE OF MIDTE	CO 2	
Question: 6	Question: 6	
Lesson Plan No.:11	Topic: Linear Differential Equation	Source: Engg Mathematics-II By Dr. Sanjay Bansal
Question: 7	Question: 7 Define various types of Bernoulli's form of linear differential equation.	
Lesson Plan No.: 12	Topic: Linear Differential Equation	Source: Engg Mathematics-II By Dr. Sanjay Bansal
Question: 8	How do you solve higher degree differential equations? Question: 8	
Lesson Plan No.:14	Topic: Linear Differential Equation	Source: Engg Mathematics-II By Dr. Sanjay Bansal
Question: 9	How do you solve first order high degree differential equations?	
Lesson Plan No.:15	Topic: Linear Differential Equation	Source: Engg Mathematics-II By Dr. Sanjay Bansal
Question: 10	Question: 10 Define the Clairaut's form of differential equation	
Lesson Plan No.:16	Topic: Linear Differential Equation	Source: Engg Mathematics-II By Dr. Sanjay Bansal
Part B		
FOR MIDTERM 1 - Part B : Total number of questions to be given are six (3 from CO1 and 3 from CO2), out of which student must answer four (2 from CO1 and 2 from CO2). FOR MIDTERM 2 - Part B : Total number of questions to be given are six (3 from CO3 and		

TYPE OF MIDTERM, AS PER INSTRUCTIONS ABOVE. CO 1		01
Question: 1	If A = $\begin{bmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & -1 \end{bmatrix}$ and B = $\begin{bmatrix} 1 & 3 & 2 \\ 1 & 2 & 1 \\ 2 & -3 & -1 \end{bmatrix}$ be two methree, Verify that $(AB)^{-1} = A^{-1}B^{-1}$	natrices of the order
Lesson Plan No.:02	Topic: Matrix	Source: Engg Mathematics-II By Dr. Sanjay Bansal
Question: 2	Find the Rank of the matrix A where A = $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 2 \end{bmatrix}$	
Lesson Plan No.:3	Topic: Matrix	Source: Engg Mathematics-II By Dr. Sanjay Bansal
Question: 3	Find the Eigen values and Eigen vectors of the matrix A	$ = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix} $
Lesson Plan No.:07	Topic: Matrix By Dr. Sanjay Bansal	
4. CHOOSE COURSE OUTCOME (CO) NUMBER ACCORDING TO THE TYPE OF MIDTERM, AS PER INSTRUCTIONS ABOVE.CO 2		
Question: 4	Solve the following differential equation : $\frac{dy}{dx} + \frac{3x^2}{1+x^3}$ y	$v = \frac{\sin^2 x}{1 + x^2}$
Lesson Plan No.:11	Topic: Linear Differential Equation	Source: Engg Mathematics-II By Dr. Sanjay

		Bansal	
Question: 5	Solve the differential equation: $(e^{y} + 1)cosx dx + e^{y} sin x dy = 0$		
Lesson Plan No.:13	Topic: Linear Differential Equation	Source: Engg Mathematics-II By Dr. Sanjay Bansal	
Question: 6	Solve the differential equation : $y^2 + x^2p^2 - 2xyp = 4p^2$		
Lesson Plan No.:16	Topic: Linear Differential Equation By Dr. Sanjay Bansal		
Part C			
FOR MIDTERM 1 - Part C : Total number of questions to be given are six (3 from CO1 and 3 from CO2), out of which student must answer four (2 from CO1 and 2 from CO2). FOR MIDTERM 2 - Part C : Total number of questions to be given are six (3 from CO3 and 3 from CO4), out of which student must answer four (2 from CO3 and 2 from CO4). FOR MIDTERM 3 - Part C : Total number of questions to be given are six (3 from CO4). FOR MIDTERM 3 - Part C : Total number of questions to be given are six (3 from CO4). FOR MIDTERM 3 - Part C : Total number of questions to be given are six (3 from CO5 and 3 from CO6), out of which student has to answer four (2 from CO5 and 2 from CO6).			
5. CHOOSE COU THE TYPE OF M	RSE OUTCOME (CO) NUMBER ACCORDING TO DTERM, AS PER INSTRUCTIONS ABOVE.	CO 1	
Question: 1	Reduce the matrix $A = \begin{bmatrix} 1 & -1 & 2 & 0 \\ 2 & -2 & -1 & 2 \\ 1 & -1 & 2 & -3 \end{bmatrix}$ to Echelon form and find the rank of matrix.		
Lesson Plan No.:4	Topic: Matrix	Source: Engg Mathematics-II By Dr. Sanjay Bansal	
Question: 2	Find the characteristic equation of the matrix $A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$ compute A^{-1} . Also find the matrix represented by $A^8 - 5A^7 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$	$\begin{bmatrix} 1\\0\\2 \end{bmatrix}$ and hence	

Lesson Plan No.:8	Topic: Matrix	Source: Engg Mathematics-II By Dr. Sanjay Bansal
Question: 3	Prove that the full matrix is orthogonal $\frac{1}{3}\begin{bmatrix} 1 & 2 & 2\\ 2 & 1 & -2\\ 2 & -2 & 1 \end{bmatrix}$]
Lesson Plan No.:10	Topic: Matrix	Source: Engg Mathematics-II By Dr. Sanjay Bansal
6. CHOOSE COU THE TYPE OF M	RSE OUTCOME (CO) NUMBER ACCORDING TO IDTERM, AS PER INSTRUCTIONS ABOVE.	CO 2
	Solve the differential equation:	
Question: 4	(2ax + by)ydx + (ax + 2by)xdy	v = 0
Lesson Plan No.:13	Topic: Matrix	Source: Engg Mathematics-II By Dr. Sanjay Bansal
Question: 5	Solve the following differential equation: $2 \sin x \frac{dy}{dx} - y \cos x = xy^3 e^x$	
Lesson Plan No.:12	Topic: Linear Differential Equation	Source: Engg Mathematics-II By Dr. Sanjay Bansal
	Solve the differential equation :	
Question: 6	$xy^{2} + (p^{2} + 2) = 2py^{3} + x^{3}$	
Lesson Plan No.:14	Topic: Linear Differential Equation	Source: Engg Mathematics-II By Dr. Sanjay Bansal

Upload Scanned Document in Case of Numerical or Diagram for Any of the Above Questions. (Mention question number with relevant fig / numerical / equations. Max 150 KB)	Not required yet.
I have scrutinized the question paper. There is no spelling mistake or any type of irrelevant question.	PANKAJ TOMAR