School of Aeronautics (Neemrana)

Question Paper For Back / Re-back Internal Assessment Examination (Theory) - Old Scheme i.e 2012 Syllabus

Instructions For Students / Faculty

Back / Re-back Internal Examination (Total 60 Marks, 2 Hrs, Syllabus From Beginning of The Session)

Total number of guestions to be given are 10, each carrying 10 marks and it is compulsory to attend 2 guestions from Part A and 4 questions from Part B. There is a choice of two questions out of four in part A and 4 questions out of 6 in Part B. Part A will be theoretical or derivation type (Not More Than 70 Words For Question). Part B will be fully numerically oriented questions (Not More Than 70 Words For Question), except for the list of subjects given below. No objective type or fill in the blanks shall be given, but subpart of guestion can be given for both Part A & B.

* LIST OF ELABORATIVE THEORY QUESTION SUBJECTS: Aircraft Materials, Aircraft System, Aircraft Rules & Regulation-I, Mechanics of Composite Materials, Aircraft Design, Aircraft Rules & Regulation-II, Avionics-I, Helicopter Theory, Maintenance of Airframe and System Design, Avionics-II, Airlines and Airport Management, Maintenance of Power Plant & Systems

FACULTY MEMBERS, PLEASE ENSURE EXCEPT ABOVE LISTED SUBJECTS, NO THEORITICAL ELABORATIVE QUESTION SHOULD BE GIVEN IN PART 'B' OF QUESTION PAPER

STUDENT IS ALLOWED TO ENTER LATE NOT MORE THAN 15 MIN AFTER STARTING OF EXAM, AND MAY LEAVE THE EXAM HALL ON EXPIRY OF ATLEAST OF 1 Hr FROM THE STARTING TIME OF EXAMINATION

26/11/2020

02/12/2020

Semester: 2

Sidhartha Sondh Name of Faculty* Date of Submission of QP 205 - Engineering Mechanics (Old) Date of Examination* Subject* B.Tech (Aeronautical Engineering) Email Id of Faculty:* sidharthasondh@soaneemrana.org Course*

963 455 7511

Question Paper & Student Details

Student Name	Student Reg No.	

Semester*

Part A

Phone Number of Faculty*

Question : 1*	Explain the follow I. Limiting fricti II. Angle of fricti III. Uniform velo	ing terms: ion city			1,
Lesson Plan*	6	Topic*	Fundamentals	Source*	Self

Question : 2*	Write impulse momentum equation & give its applications.				
Lesson Plan*	14	Topic*	Momentum equation	Source*	Self
Question : 3*	Distinguish betwe I. Sliding frictio II. Plane motion	en the following n and rolling fri and projectile n	: ction notion		
Lesson Plan*	12	Topic*	Friction	Source*	Self
Question : 4*	Explain the princip	ole of virtual wo	rk.		
Lesson Plan*	22	Topic*	Virtual Work	Source*	Self
Part B					
Question : 1*	A drum containing 100 mm. & diamet I) M.A. ii) V.R. iii) Efficiency	g water weighing er of wheel is 50	g 500N is to be raised from a well l 00mm, applied force = 125N, Deter	by a simple wheel and a rmine	xle. If diameter of axle is
Lesson Plan*	24	Topic*	Velocity ratio	Source*	Engineering Mechanics
Question : 2*	A small belt make is 600N and coeffi by such arrangem	s 1.5 turns on a cient of friction l ent.	pulley and supports a weight at or between belt and pulley is (0.15). I	ne end of belt. If at othe Determine range of weiş	r end pull force excreted ght that can supported

Lesson Plan*	20	Topic*	Belts	Source*	Engineering Mechanics	
Question : 3*	Explain with exam	nple "the princip	le of conservation of energy Derive	e expression for transfor	mation of energy.	
Lesson Plan*	11	Topic*	Conservation of energy	Source*	Self	
Question : 4*	Derive an expres body in equilibri	sion for the Pmin um. Consider the	and Pmax that is required to act force to be acting at some angle 6	on a body on a rough ind Ə with the inclined pland	clined plane to keep the e.	
Lesson Plan*	4	Topic*	Force	Source*	Engineering Mechanics	
Question : 5	Explain the parallel axis theorem and derive perpendicular axis theorem.					
Lesson Plan	8	Торіс	Axis theorem	Source	Self	
Question : 6	An airplane flying at a straight levelled course at 200 km/h rata height of 1000 meters above the ground. An anti- aircraft gun located on the ground fires a shell with an initial velocity of 300 m/s, at the instant when the plane is vertically above it. At what inclination to the horizontal, should the gun be fired to hit the plane? What time after firing, the gun shell will hit the plane? What will then be the horizontal distance of the plane from the gun?					
Lesson Plan	16	Торіс	Projectile motion	Source	Engineering Mechanics	
Upload Scanned Document In Case of Numerical or Diagram for any of the above question Mention question number with			Choose files or drag here			

relevant fig / numerical / equations. Max 150 KB

I have scrutinized the question paper. There is no spelling mistake or any type of irrelevant question.

