School of Aeronautics (Neemrana)

Question Paper For Back / Re-back Internal Assessment Examination (Theory) - Old Scheme i.e 2012 Syllabus

Instructions For Students / Faculty

Back / Re-back Internal Examination (Total 60 Marks, 2 Hrs, Syllabus From Beginning of The Session)

Total number of questions to be given are 10, each carrying 10 marks and it is compulsory to attend 2 questions from Part A and 4 questions from Part B. There is a choice of two questions out of four in part A and 4 questions out of 6 in Part B. Part A will be theoretical or derivation type (Not More Than 70 Words For Question). Part B will be fully numerically oriented questions (Not More Than 70 Words For Question), except for the list of subjects given below. No objective type or fill in the blanks shall be given, but subpart of question can be given for both Part A & B.

* LIST OF ELABORATIVE THEORY QUESTION SUBJECTS: Aircraft Materials, Aircraft System, Aircraft Rules & Regulation-I, Mechanics of Composite Materials, Aircraft Design, Aircraft Rules & Regulation-II, Avionics-I, Helicopter Theory, Maintenance of Airframe and System Design, Avionics-II, Airlines and Airport Management, Maintenance of Power Plant & Systems

FACULTY MEMBERS, PLEASE ENSURE EXCEPT ABOVE LISTED SUBJECTS, NO THEORITICAL ELABORATIVE QUESTION SHOULD BE GIVEN IN PART 'B' OF QUESTION PAPER

STUDENT IS ALLOWED TO ENTER LATE NOT MORE THAN 15 MIN AFTER STARTING OF EXAM, AND MAY LEAVE THE EXAM HALL ON EXPIRY OF ATLEAST OF 1 Hr FROM THE STARTING TIME OF EXAMINATION

Sidhartha Sondh 26/11/2020 Name of Faculty* Date of Submission of QP 4AN3 - Fluid Mechanics (Old) Date of Examination* 03/12/2020 Subject* **B.Tech (Mechatronics Engineering)** Email Id of Faculty:* sidharthasondh@soaneemrana.org Course* Phone Number of Faculty* 963 455 7511 Semester* Semester: 4 Student Name Student Reg No.

Question Paper & Student Details

Part A

Question : 1*	Write short a) Different b) Effect of c) Metacent d) Rotation	notes on the followi stages of transition turbulence ter and Metacentric and vorticity	ing. Draw neat diagrams wh from laminar to turbulent Height	erever necessary.		li
Lesson Plan*	14	Topic*	Fundamentals	Source*	Self	

Question : 2*	Prove the intensit	y of the pressure	e at a point in a fluid at rest is the	same in all the directio	ns.	
Lesson Plan*	11	Topic*	Pressure intensity	Source*	Self	
Question : 3*	Differentiate between: (i) Gauge pressure and Vacuum pressure (ii) Stress and Pressure (iii) Vorticity and Circulation					
Lesson Plan*	4	Topic*	Basics	Source*	Self	
Question : 4*		nship between				
Lesson Plan*	11	Topic*	Rotational flow	Source*	Self	
Part B						
Question : 1*	For a steady flow t equation.	aking place thro	bugh variable cross section duct, d	erive an expression for	the mass continuity	
Lesson Plan*	10	Topic*	Continuity equation	Source*	Self	
Question : 2*	Consider the follo rotational or irrota	wing steady, inc ational? Justify y	ompressible, two-dimensional velo our answer.	ocity field: V=(u,v)=x^2 i+	+(-2xy-1)j. Is this flow	

Lesson Plan*	11	Topic*	Rotational flow	Source*	Fluid Mechanics- Funda	
Question : 3*	A horizontal water pipe of diameter 15cm converges to 7.5cm dia. If the pressure at the two stations is 400Kpa and 150Kpa respectively. Calculate velocity at both stations and the flow rate of the water.					
Lesson Plan*	18	Topic*	Bernoulli Equation	Source*	Fluid Mechanics- Funda	
Question : 4*	uestion : 4* The resulting force F of a supersonic plane during flight can be considered as dependent upon the length of the aircraft l, velocity v, air viscosity μ, air density ρ, and bulk modulus of air K. Expess the functional relationship between these variables and the resisting force and show that the resisting force is a function of Reynolds number and Mach number.					
Lesson Plan*	35	Topic*	Dimensional analysis	Source*	Self	
Question : 5	Check whether the velocity potential.	e flow defined by	r the stream function ψ=2xy is irro	otational? If so, determin	e the corresponding	
Lesson Plan	28	Торіс	Steam function	Source	FMHM by RK Bansal	
Question : 6 Air enters a nozzle steadily at 2.21 kg/m3 and 30 m/s and leaves at 0.762 kg/m3 and 180 m/s. If the inlet area of the nozzle is 80 cm2, determine (a) the mass flow rate through the nozzle, and (b) the exit area of the nozzle.						
Lesson Plan	10	Торіс	Continuity equation	Source	Fluid Mechanics- Funda	
Upload Scanned Doct Case of Numerical or for any of the above Mention question number relevant fig / numerical / Max 150 KB	ument In Diagram question er with equations.	Choose files or drag here				

I have scrutinized the question paper. There is no spelling mistake or any type of irrelevant question.