School of Aeronautics (Neemrana)

Question Paper For Back / Re-back Internal Assessment Examination (Theory) - Old Scheme i.e 2012 Syllabus

Instructions For Students / Faculty

Back / Re-back Internal Examination (Total 60 Marks, 2 Hrs, Syllabus From Beginning of The Session)

Total number of questions to be given are 10, each carrying 10 marks and it is compulsory to attend 2 questions from Part A and 4 questions from Part B. There is a choice of two questions out of four in part A and 4 questions out of 6 in Part B. Part A will be theoretical or derivation type (Not More Than 70 Words For Question). Part B will be fully numerically oriented questions (Not More Than 70 Words For Question), except for the list of subjects given below. No objective type or fill in the blanks shall be given, but subpart of question can be given for both Part A & B.

* LIST OF ELABORATIVE THEORY QUESTION SUBJECTS: Aircraft Materials, Aircraft System, Aircraft Rules & Regulation-I, Mechanics of Composite Materials, Aircraft Design, Aircraft Rules & Regulation-II, Avionics-I, Helicopter Theory, Maintenance of Airframe and System Design, Avionics-II, Airlines and Airport Management, Maintenance of Power Plant & Systems

FACULTY MEMBERS, PLEASE ENSURE EXCEPT ABOVE LISTED SUBJECTS, NO THEORITICAL ELABORATIVE QUESTION SHOULD BE GIVEN IN PART 'B' OF QUESTION PAPER

STUDENT IS ALLOWED TO ENTER LATE NOT MORE THAN 15 MIN AFTER STARTING OF EXAM, AND MAY LEAVE THE EXAM HALL ON EXPIRY OF ATLEAST OF 1 Hr FROM THE STARTING TIME OF EXAMINATION

28/11/2020 Name of Faculty* Deepak Tomar Date of Submission of QP 4MH3 - Control Systems (Old) Date of Examination* 02/12/2020 Subject* **B.Tech (Mechatronics Engineering)** Email Id of Faculty:* Deepaktomar@soaneemrana.org Course* Phone Number of Faculty* 965 454 4096 Semester* Semester: 4 Student Name Student Reg No.

Question Paper & Student Details

Part A

Question : 1*	Explain Ope	Explain Open-loop and closed-loop system in detail.							
					1				
Lesson Plan*	3	Topic*	Open-loop and closed-loop	Source*	Modern Control Engine				

Question : 2*	Explain the signal	flow graph in de	tail with rules.				
Lesson Plan*	9	Topic*	Signal flow graph	Source*	Modern Control Engine		
Question : 3*	Describe the block	reduction techr	nique with rules.				
Lesson Plan*	8	Topic*	Block reduction technique	Source*	Modern Control Engine		
Question : 4*	Explain the steady	-state error in d	etail.				
Lesson Plan*	13	Topic*	Steady-state error	Source*	Modern Control Engine		
Part B							
Question : 1*	Describe the bode	plot and polar p	olot in detail with an example of e	ach plot.			
Lesson Plan*	20	Topic*	Bode plot and polar plot	Source*	Modern Control Engine		
Question : 2*	Discuss Routh Hur	witz criterion us	ing an example.				

Lesson Plan*	28	Topic*	Routh Hurwitz criterion	Source*	Modern Control Engine	
Question : 3*	Explain the Nyquis	st stability criter	ion.			
Lesson Plan*	31	Topic*	Nyquist stability criterion	Source*	Modern Control Engine	
Question : 4*	Explain the use of	MATLAB to find	partial fraction expansion.		1	
Lesson Plan*	36	Topic*	MATLAB	Source*	Modern Control Engine	
Question : 5	Explain gain Marg	in and Phase -M	argin in detail.			
Lesson Plan	29	Торіс	Gain Margin and Phase -Margi	Source	Modern Control Engine	
Question : 6	Discuss how MATI	AB is applicable	to solve problems in the control s	system.		
Lesson Plan	37	Торіс	MATLAB	Source	Modern Control Engine	
Upload Scanned Document In Case of Numerical or Diagram for any of the above question Mention question number with relevant fig / numerical / equations. Max 150 KB		Choose files or drag here				

I have scrutinized the question paper. There is no spelling mistake or any type of irrelevant question.