School of Aeronautics (Neemrana)

Question Paper For Back / Re-back Internal Assessment Examination (Theory) - Old Scheme i.e 2012 Syllabus

Instructions For Students / Faculty

Back / Re-back Internal Examination (Total 60 Marks, 2 Hrs, Syllabus From Beginning of The Session)

Total number of questions to be given are 10, each carrying 10 marks and it is compulsory to attend 2 questions from Part A and 4 questions from Part B. There is a choice of two questions out of four in part A and 4 questions out of 6 in Part B. Part A will be theoretical or derivation type (Not More Than 70 Words For Question). Part B will be fully numerically oriented questions (Not More Than 70 Words For Question), except for the list of subjects given below. No objective type or fill in the blanks shall be given, but subpart of question can be given for both Part A & B.

* LIST OF ELABORATIVE THEORY QUESTION SUBJECTS: Aircraft Materials, Aircraft System, Aircraft Rules & Regulation-I, Mechanics of Composite Materials, Aircraft Design, Aircraft Rules & Regulation-II, Avionics-I, Helicopter Theory, Maintenance of Airframe and System Design, Avionics-II, Airlines and Airport Management, Maintenance of Power Plant & Systems

FACULTY MEMBERS, PLEASE ENSURE EXCEPT ABOVE LISTED SUBJECTS, NO THEORITICAL ELABORATIVE QUESTION SHOULD BE GIVEN IN PART 'B' OF QUESTION PAPER

STUDENT IS ALLOWED TO ENTER LATE NOT MORE THAN 15 MIN AFTER STARTING OF EXAM, AND MAY LEAVE THE EXAM HALL ON EXPIRY OF ATLEAST OF 1 Hr FROM THE STARTING TIME OF EXAMINATION

Name of Faculty*			Mrs Tarun Thukral	Date of Submission of QP		15/03/2021	
Subject* 5MH4 - 05 - Modern		Modern	Control Engineering (New)	Date of Exam	nination*	22/03/2021	
Email Id of Faculty:*		tarun	thukral@soaneemrana.org	Course* B.Tech (Aero		nautical Engineering)	-
Phone Number of Faculty*			750 096 6580	Semester*	Semester : 5		•
Student Name				Student Reg	No.		

Question Paper & Student Details

Part A

Question : 1*	Define the	Define the concept of i. State ii. State variables iii. State space iv. Modern Vs conventional control theory					
					/		
Lesson Plan*	10	Topic*	State Space Representation	Source*	Control system Enginee		

Question : 2*	Explain P, Pi and P	ID controllers. W	/hat are their effects on system pe	erformance?	
Lesson Plan*	39	Topic*	Stability Criterion	Source*	Control system Enginee
Question : 3*	Explain the Conce	pt of Linearity, re	elaxedness, time invariance, causa	ility.	
Lesson Plan*	8	Topic*	Basic Concepts	Source*	Control system Enginee
Question : 4*	a.Write the proper b. Explain Jury sta	ties of STM. bility criterion.			
Lesson Plan*	26 & 36	Topic*	Stability Criterion	Source*	Control system Enginee
Part B					
Question : 1*	Calculate the tran	sfer function usi	ng signal flow graph of figure 1.		
Lesson Plan*	19	Topic*	State Space Representation	Source*	Control system Enginee
Question : 2*	Find the number o	of open right hal	f plane poles of the given transfer	function in numerical s	heet.

Lesson Plan*	31	Topic*	Digital Control Systems	Source*	Control system Enginee
Question : 3*	Find the inverse	z transform of eo	uation given in figure 2		
Lesson Plan*	33	Topic*	Digital Control Systems	Source*	Control system Enginee
Question : 4*	Develop the jord	an's canonical sta	ate model for a system having trar	nsfer function given in n	umerical sheet.
Lesson Plan*	21	Topic*	State Space Representation	Source*	Control system Enginee
Question : 5	A feedback syste graph and obtair	m is represented the state model	by closed loop transfer function g	iven in numerical sheet	. Draw the signal flow
Lesson Plan	18 & 22	Торіс	State Space Representation	Source	Control system Enginee
Question : 6	Consider a matri	x A given in num	erical sheet. Obtain the diagonaliz	ed matrix A.	
Lesson Plan	20	Торіс	State Space Representation	Source	Control system Enginee
Upload Scanned Doct Case of Numerical or for any of the above Mention question number relevant fig (numerical (Diagram question er with	hive-1.zip (49 KB)		×

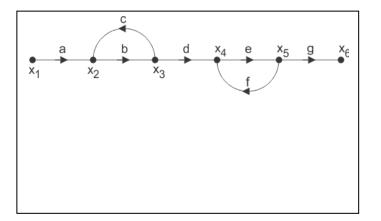
relevant fig / numerical / equations. Max 150 KB

I have scrutinized the question paper. There is no spelling mistake or any type of irrelevant question.

ر مرکز 1

School of Aeronautics (Neemrana)

Question Paper For Internal Assessment Examination (Theory) Diagram Sheet

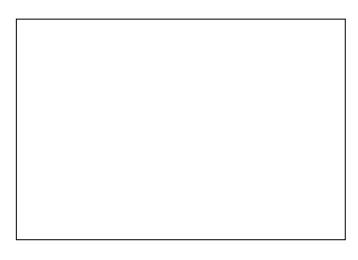

Faculties preparing Question Paper for various examinations, need to draw or insert diagrams as per requirement of questions in the below format and upload the same in upload documents column of the question paper.

Question Paper & Student Details

Mid Term *	Internal improvement	Date of Submission of	of QP 3/2	0/2021	!!
Name of Faculty *	Tarun Thukral	Date of Examination	* 22/	22/3/2021	
Subject * Modern C	Modern Control Engg.		echatronics Engg]
Back/Reback		Semester * 5			
Email Id of Faculty:*	tarunthukral@soaneemrana.org	Phone Number of Fa	aculty*	7500966580]
Student Name		Student Reg No.]

Part No. __C_, Question Number __1_.

Part No. _C__, Question Number ___3_.



5. Find $Z^{-1}\left[\frac{z^2}{(z-a)(z-b)}\right]$.

Part No. ____, Question Number _____.

Part No. ____, Question Number _____.

School of Aeronautics (Neemrana)

Numerical Sheet for Part C of New Scheme and Part B of Old Scheme Question Paper - Credit 1/2/3/4 and 2012 Scheme

Instructions For Students / Faculty Mid Term I (Total 80 Marks, 2 hrs.)

- Part A: Total number of questions to be given are ten, each carrying 2 marks and are compulsory to attend. There is no choice. They are short answer type questions (Not More Than 25 Words For both Question & Answer), no objective type or fill in the blanks. Total 20 marks.
- Part B: Total number of questions to be given are six, out of which student has to answer any four. They are long answer type (Not More Than 50 Words for Question), each carrying 6 marks. Total 24 marks.
- Part C: Total number of questions to be given are four, out of which student has to answer any three. They are numerical answer type / fully elaborative type (Not More Than 70 Words For Question)*, each carrying 12 marks. Total 36 marks.

Mid Term II & III (Total 120 Marks, 2.5 hrs.)

- Part A: Total number of questions to be given are ten, each carrying 2 marks and are compulsory to attend. There is no choice. They are short answer type questions (Not More Than 25 Words For both Question & Answer), no objective type or fill in the blanks. Total 20 marks
- Part B: Total number of questions to be given are seven, out of which student has to answer any five. They are long answer type (Not More Than 50 Words For Question), each carrying 8 marks. Total 40 marks.
- Part C: Total number of questions to be given are five, out of which student has to answer any four. They are numerical answer type / fully elaborative type (Not More Than 70 Words For Question)*, each carrying 15 marks. Total 60 marks.

* LIST OF ELABORATIVE THEORY QUESTION SUBJECTS: Communication Skills, Human Values, Technical Communication, Managerial Economics and Financial, Aircraft Materials and Processes, Aircraft Systems, Aircraft Maintenance Practices, Avionics-I, Aircraft Rules and Regulation, Wind Tunnel Techniques, Maintenance of Airframe and System, Helicopter Theory, Avionics-II, Maintenance of Power Plant and System, Unmanned Aerial Vehicles & Systems (UAV), Space Mission Design & Optimization, CAD, Airlines and Airport Management.

FACULTY MEMBERS, PLEASE ENSURE EXCEPT ABOVE LISTED SUBJECTS, NO THEORITICAL ELABORATIVE QUESTION SHOULD BE GIVEN IN PART 'C' OF QUESTION PAPER.

FOR OLD SCHEME INSTRUCTIONS ARE SAME AS ON QP FORMAT OF OLD SCHEME

Question Paper & Student Details

Mid Term *			Date of Examination *			[!!
		Internal improvement			3/20/2021	1
		Tarun Thukral			22/3/2021	!
Subject *	Modern Control Engg		Course* Mechatronics		nics	
Batch		Back/Reback	Semester * 5 Phone Number of Faculty*			
Email Id of Faculty:*		tarunthukral@soaneemrana.org			7500966580	
Student Name			Student Reg N	No.		

Part C (2017 Scheme) & Part B (2012 Scheme)

Question: 2*	
	10/ s ⁵ + 2s ⁴ + 3s ³ + 6s ² + 5s + 3
Lesson Plan *	Topic* Source*
Question: 4*	$T(s) = 2s^2 + 6s + 7 / (s+1)^2 (s+2)$
Lesson Plan *	Topic* Source*
Question: 5	8 / s ³ + 7s ² - 14s + 8
Lesson Plan	Topic Source
Question: 6	$A = \begin{matrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{matrix}$
Lesson Plan	Topic Source

Торіс		Sou	rce	
Tonio				
	Topic			

I have scrutinized the question paper. There is no spelling mistake or any type of irrelevant question.