School of Aeronautics (Neemrana)

Question Paper For Back / Re-back Internal Assessment Examination (Theory) - Old Scheme i.e 2012 Syllabus

Instructions For Students / Faculty

Back / Re-back Internal Examination (Total 60 Marks, 2 Hrs, Syllabus From Beginning of The Session)

Total number of questions to be given are 10, each carrying 10 marks and it is compulsory to attend 2 questions from Part A and 4 questions from Part B. There is a choice of two questions out of four in part A and 4 questions out of 6 in Part B. Part A will be theoretical or derivation type (Not More Than 70 Words For Question). Part B will be fully numerically oriented questions (Not More Than 70 Words For Question), except for the list of subjects given below. No objective type or fill in the blanks shall be given, but subpart of question can be given for both Part A & B.

* LIST OF ELABORATIVE THEORY QUESTION SUBJECTS: Aircraft Materials, Aircraft System, Aircraft Rules & Regulation-I, Mechanics of Composite Materials, Aircraft Design, Aircraft Rules & Regulation-II, Avionics-I, Helicopter Theory, Maintenance of Airframe and System Design, Avionics-II, Airlines and Airport Management, Maintenance of Power Plant & Systems

FACULTY MEMBERS, PLEASE ENSURE EXCEPT ABOVE LISTED SUBJECTS, NO THEORITICAL ELABORATIVE QUESTION SHOULD BE GIVEN IN PART 'B' OF QUESTION PAPER

STUDENT IS ALLOWED TO ENTER LATE NOT MORE THAN 15 MIN AFTER STARTING OF EXAM, AND MAY LEAVE THE EXAM HALL ON EXPIRY OF ATLEAST OF 1 Hr FROM THE STARTING TIME OF EXAMINATION

27/11/2020 Name of Faculty* Dr Bipin Kumar Dwivedi Date of Submission of QP 6AN4 - Aircraft Structure II (Old) Date of Examination* 07/12/2020 Subject* B.Tech (Aeronautical Engineering) Email Id of Faculty:* bipindkumardwivedi@soaneemrana.org Course* Phone Number of Faculty* 931 400 9035 Semester* Semester: 6 Student Name Student Reg No.

Question Paper & Student Details

Part A

Question : 1*	Explain the folowing (a) Moment of inertia about X-axis (b) Moment of inertia about Y-axis (c) Differentiate between symmetrical and unsymmetrical section of beam.								
					4				
Lesson Plan*	3	Topic*	unsymmtrical bending	Source*	AIRCRAFT STRUCTURES				

Question : 2*	Explain the following (a) Skew load (b) Open and closed section of beam. (c) Differentiate between bending stress and shear stress in a beam.							
Lesson Plan*	7	Topic*	Skew load	Source*	AIRCRAFT STRUCTURES			
Question : 3*	Derive the express	sion to locate the	e shear center in a semi-circular tl	hin walled section.				
Lesson Plan*	15	Topic*	Shear flow in open section	Source*	AIRCRAFT STRUCTURES			
Question : 4*	Explain about the	Gust load envel	ope on V-n diagram.					
Lesson Plan*	40	Topic*	Gust load	Source*	AIRCRAFT STRUCTURES			
Part B								
Question : 1*	Calculate the prin	cipal moment of	inertia of the given unsymmetrica	al section in the fig-1.				
Lesson Plan*	5	Topic*	unsymmtrical bending	Source*	AIRCRAFT STRUCTURES			
Question : 2*	Find the shear flow Given in fig-3. Take	w in BE section c e G=25x10^5N/c	of the multicell tube structure m^2 and thickness t=0.1cm.					

Lesson Plan*	22	Topic*	Shear flow in closed section	Source*	AIRCRAFT STRUCTURES		
Question : 3*	Determine th	e maximum tensile	e stress point on the given symmetr	ical section with sk	ew load in fig-2.		
Lesson Plan*	9	Topic*	unsymmtrical bending	Source*	AIRCRAFT STRUCTURES		
Question : 4*	Determine th	e maximum compr	essive stress point on the given syn	nmetrical section w	rith skew load in fig-2.		
Lesson Plan*	10	Topic*	unsymmtrical bending	Source*	AIRCRAFT STRUCTURES		
Question : 5	Determine th Given in fig-3.	e twisting angle pe . Take G=25x10^5N	er unit length of the multicell tube s /cm^2 and thickness t=0.1cm.	structure			
Lesson Plan	25	Торіс	Shear flow in closed section	Source	AIRCRAFT STRUCTURES		
Question : 6	Determine th	e position of neutr	al axis of the given unsymmetrical s	section in the fig-1.			
Lesson Plan	15	Торіс	unsymmtrical bending	Source	AIRCRAFT STRUCTURES		
Upload Scanned Document In Case of Numerical or Diagram for any of the above question Mention question number with							

relevant fig / numerical / equations. Max 150 KB

I have scrutinized the question paper. There is no spelling mistake or any type of irrelevant question.

c

BACK PAPER EXAM

