School of Aeronautics (Neemrana)

Question Paper For Back / Re-back Internal Assessment Examination (Theory) - Old Scheme i.e 2012 Syllabus

Instructions For Students / Faculty

Back / Re-back Internal Examination (Total 60 Marks, 2 Hrs, Syllabus From Beginning of The Session)

Total number of questions to be given are 10, each carrying 10 marks and it is compulsory to attend 2 questions from Part A and 4 questions from Part B. There is a choice of two questions out of four in part A and 4 questions out of 6 in Part B. Part A will be theoretical or derivation type (Not More Than 70 Words For Question). Part B will be fully numerically oriented questions (Not More Than 70 Words For Question), except for the list of subjects given below. No objective type or fill in the blanks shall be given, but subpart of question can be given for both Part A & B.

* LIST OF ELABORATIVE THEORY QUESTION SUBJECTS: Aircraft Materials, Aircraft System, Aircraft Rules & Regulation-I, Mechanics of Composite Materials, Aircraft Design, Aircraft Rules & Regulation-II, Avionics-I, Helicopter Theory, Maintenance of Airframe and System Design, Avionics-II, Airlines and Airport Management, Maintenance of Power Plant & Systems

FACULTY MEMBERS, PLEASE ENSURE EXCEPT ABOVE LISTED SUBJECTS, NO THEORITICAL ELABORATIVE QUESTION SHOULD BE GIVEN IN PART 'B' OF QUESTION PAPER

STUDENT IS ALLOWED TO ENTER LATE NOT MORE THAN 15 MIN AFTER STARTING OF EXAM, AND MAY LEAVE THE EXAM HALL ON EXPIRY OF ATLEAST OF 1 Hr FROM THE STARTING TIME OF EXAMINATION

Question Paper & Student Details

Name of Faculty*		Maris Brightson C	L Date of Sub	mission of QP	30/11/2020	
Subject*	6AN6.2- Com	putational Fluid Dynamics ((Old) Date of Exa	mination*	05/12/2020	
Email Id of Faculty:*		marisbrightson@soaneen	nrana.org Course*	B.Tech (Aeronautical Engineering)		~
Phone Number of Faculty*		805 667 7643	Semester*	Semester : 6		•
Student Name	e		Student Re	g No.		
Part A						
Question : 1*	Derive	e Continuity equation in the	e non-conservative form.			
Lesson Plan*	NA	Topic*	Computational Fluid Dynamics	Source*	John D Andersor	n Jr., Cor

Question : 2*	Derive the energy equation for a viscous flow in the partial differential non-conservation form.					
				- +		
Lesson Plan*	NA	Topic*	Computational Fluid Dynamics	Source*	John D Anderson Jr., Cor	
Question : 3*	Write down ellipti	c, parabolic and	hyperbolic partial differential equ	ations as applicable to	CFD.	
Lesson Plan*	NA	Topic*	Computational Fluid Dynamics	Source*	John D Anderson Jr., Cor	
Question : 4* Lesson Plan*	State and explain	the difference be	etween explicit and implicit method	ods with suitable examp	John D Anderson Jr., Cor	
Part B		Торіс	Computational Flata Dynamics	Jource	John B / Midel 30H Jr., Col	
Question : 1*	What is discretiza	tion? Discuss diff	erent types of discretization techr	niques used in CFD?	li,	
Lesson Plan*	NA	Topic*	Computational Fluid Dynamics	Source*	John D Anderson Jr., Cor	
Question : 2*	Explain the descri	ption of the Pran	dtl boundary layer equation and i	ts solution methodolog	y.	

Lesson Plan*	NA	Topic*	Computational Fluid Dynamics	Source*	John D Anderson Jr., Cor	
Question : 3*	Discuss the Lax	method in brief	also explains stability conditions bas	ed on CFL cond	itions.	
Lesson Plan*	NA	Topic*	Computational Fluid Dynamics	Source*	John D Anderson Jr., Cor	
Question : 4*	Explain the sho	ck-capturing tec	hnique in brief.			
Lesson Plan*	NA	Topic*	Computational Fluid Dynamics	Source*	John D Anderson Jr., Cor	
Question : 5	(1) Difference (2) Define pred	between structuconditioning tec	ure and unstructured grid. hniques with a suitable example.			
Lesson Plan	NA	Topic	Computational Fluid Dynamics	Source	John D Anderson Jr., Cor	
Question : 6	Derive Navier-S	tokes equation i	n non-conservation form.			
Lesson Plan	NA	Topic	Computational Fluid Dynamics	Source	John D Anderson Jr., Cor	
Upload Scanned Do Case of Numerical for any of the abov Mention question nun relevant fig / numerica Max 150 KB	or Diagram re question nber with	Choose files or drag here				

I have scrutinized the question paper. There is no spelling mistake or any type of irrelevant question.

