Question Paper For Internal Assessment Examination (Theory) - Credit 4 / 14 / SET 1

Instructions For Students / Faculty

Mid Term I (Total 80 Marks, 2 HRS. Syllabus From Beginning Of Session)

- Part A: Total number of questions to be given are ten, each carrying 2 marks and are compulsory to attend. There is
 no choice. They are short answer type questions (Not More Than 25 Words For both Question & Answer), no
 objective type or fill in the blanks. Total 20 marks.
- Part B: Total number of questions to be given are six, out of which student has to answer any four. They are long answer type (**Not More Than 50 Words For Question**), each carrying 6 marks. Total 24 marks.
- Part C: Total number of questions to be given are four, out of which student has to answer any three. They are numerical answer type / fully elaborative type (**Not More Than 70 Words For Question)***, each carrying 12 marks. Total 36 marks.

Mid Term II & III (Total 120 Marks, 2.5 HRS. Syllabus From Beginning Of Session)

- Part A: Total number of questions to be given are ten, each carrying 2 marks and are compulsory to attend. There is
 no choice. They are short answer type questions (Not More Than 25 Words For both Question & Answer), no
 objective type or fill in the blanks. Total 20 marks.
- Part B: Total number of questions to be given are seven, out of which student has to answer any five. They are long answer type (**Not More Than 50 Words For Question**), each carrying 8 marks. Total 40 marks.
- Part C: Total number of questions to be given are five, out of which student has to answer any four. They are numerical answer type / fully elaborative type (**Not More Than 70 Words For Question)***, each carrying 15 marks. Total 60 marks.

* LIST OF ELABORATIVE THEORY QUESTION SUBJECTS: NO SUBJECT UNDER CREDIT FOUR

FACULTY MEMBERS, PLEASE ENSURE EXCEPT ABOVE LISTED SUBJECTS, NO THEORITICALELABORATIVE QUESTION SHOULD BE GIVEN IN PART 'C' OF QUESTION PAPER

STUDENT IS ALLOWED TO ENTER LATE NOT MORE THAN 15 MIN AFTER STARTING OF EXAM, AND MAY LEAVE THE EXAM HALL ON EXPIRY OF ATLEAST OF 1 Hr FROM THE STARTING TIME OF EXAMINATION.

Question Paper & Student Details

Type of Exam	Internal Improvement Exam	Date of Submission	26/11/2020		
Name of Faculty	Mr. Bipin Kumar Dwivedi	Date of Examination	03/12/2020		
Course	B.Tech (Aeronautical Engineering)	Semester	SEMESTER:4		
Batch	-	Subject	4 AN4 - 05 Aircraft Structures-I (Cr 4)		

COURSE OUTCOMES FOR REFERENCE TO FRAME QUESTION PAPER

(Faculties are required to mention relevant Course Outcome number against the respective question in QP)

Course Outcome School of Aeronautics (neemrana)

Email I'd	bipinkumardwivedi@soaneemrana.org	Phone No.	931-400-9035			
Student Name		Student Reg No.				
Part A	'	•				
Question : 1	Define semi-monocoque structures.					
2	Aircraft structure	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM				
Question : 2	What is statically indeterminent structure	9?	,			
4	Indeterminent structure	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM				
Question : 3	What is truss?					
7	Determinent structure	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM				
Question : 4	What do you mean by composite beam?	What do you mean by composite beam?				
15	Indeterminent structure	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM				
Question : 5	What is Costigliano's theorem?	What is Costigliano's theorem?				
18	Energy method	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM				
Question : 6	Define the degree of indeterminancy.					
16	Indeterminent structure	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM				
Question : 7	What is principal of virtual wark?	What is principal of virtual wark?				
20	Energy method	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM				
Question : 8	Define the buckling of column.	Define the buckling of column.				
24	Columns	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM				
Question : 9	Differentiate between ductile and brittle r	naterials.				

26	Failure theories	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM				
Question : 10	Define principal stresses and strain.					
30	Failure theories	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM				
Part B						
Question : 1	Explain the features of aircraft struc	cture.				
2	Aircraft structure	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM				
Question : 2	Explain the method of sections to a	analyse the planer trusses.				
8	Determinent structure	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM				
Question : 3	Describe the clapeyron's three moment equation method for Indeterminent structures.					
15	Indeterminent structure	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM				
Question : 4	Describe the moment area method to determine the deformation due to loading.					
22	Deformation due to loading	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM				
Question : 5	Explain the Maxwell's reciprod	cal theorem.				
25	Energy method	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM				
Question : 6	Explain the Euler's theory of long column, and derive the critical load expression for both end of column are fix.					
26	Columns	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM				
Question: 7	Explain about the octahedral shear	Explain about the octahedral shear stress theory.				
30	Failure theories	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM				

Part C

Question : 1	Draw the shear force and bending moment diagram of given fig-1. Also find the maximum bending moment.				
4	Shear force and bending moment	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM			
Question : 2	calculate the maximum deflection of the	given fig-1.			
26	Deformation due to loading	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM			
Question : 3	Determine the reactions at both the end A	A and D of the given fig-2.			
8	Determinent structure	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM			
Question : 4	Determine the nature of force in member CD by joint method of the given fig-2.				
12	Determinent structure	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM			
Question : 5	Determine the nature of force in member	BE by method of sections of the given fig-2.			
14	Determinent structure	STRENGTH OF MATERIALS BY S. RAMAMRUTHAM			
Diagram For Any of T	bcument In Case of Numerical or he Above Questions. (Mention question / numerical / equations. Max 150 KB)	https://form.123formbuilder.com/upload_dld.php? fileid=452521f445940e50b6a42d84d6d31bae			
I have scrutinized the mistake or any type o	question paper. There is no spelling firrelevant question.	Yes			

Corporate Office: H 974, Palam Extension, Part 1, Sector 7, Dwarka, New Delhi 110077
Ph. 011-25084354, 9811315363, 9314009020, E-Mail: info@soaneemrana.org, ccashoka@gmail.com
Website: www.soaneemrana.org, www.soaneemrana.org, www.soadelhi.com

School of Aeronautics (Neemrana)

Question Paper For Back / Re-back Internal Assessment Examination (Theory) - Old Scheme i.e 2012 Syllabus

Instructions For Students / Faculty

Back / Re-back Internal Examination (Total 60 Marks, 2 Hrs, Syllabus From Beginning of The Session)

Total number of questions to be given are 10, each carrying 10 marks and it is compulsory to attend 2 questions from Part A and 4 questions from Part B. There is a choice of two questions out of four in part A and 4 questions out of 6 in Part B. Part A will be theoretical or derivation type (Not More Than 70 Words For Question). Part B will be fully numerically oriented questions (Not More Than 70 Words For Question), except for the list of subjects given below. No objective type or fill in the blanks shall be given, but subpart of question can be given for both Part A & B.

* LIST OF ELABORATIVE THEORY QUESTION SUBJECTS: Aircraft Materials, Aircraft System, Aircraft Rules & Regulation-I, Mechanics of Composite Materials, Aircraft Design, Aircraft Rules & Regulation-II, Avionics-I, Helicopter Theory, Maintenance of Airframe and System Design, Avionics-II, Airlines and Airport Management, Maintenance of Power Plant & Systems

FACULTY MEMBERS, PLEASE ENSURE EXCEPT ABOVE LISTED SUBJECTS, NO THEORITICAL ELABORATIVE QUESTION SHOULD BE GIVEN IN PART 'B' OF QUESTION PAPER

STUDENT IS ALLOWED TO ENTER LATE NOT MORE THAN 15 MIN AFTER STARTING OF EXAM, AND MAY LEAVE THE EXAM HALL ON EXPIRY OF ATLEAST OF 1 Hr FROM THE STARTING TIME OF EXAMINATION

Question Paper & Student Details

Name of Facu	lty*	Sidhartha Sondh	Da	ate of Subm	nission of QP	26/11/2020	
Subject*	4AN3 - Fluid	Mechanics (Old)	▼ Da	ate of Exam	ination*	03/12/2020	
Email Id of Fa	culty:*	sidharthasondh@soanee	emrana.org Co	ourse*	B.Tech (Aero	nautical Engineering)	~
Phone Numbe	er of Faculty*	963 455 7511	Se	emester*	Semester : 4		•
Student Name	e		St	udent Reg	No.		
Question : 1*	a) Dif b) Eff c) Me	e short notes on the following ferent stages of transition of ect of turbulence stacenter and Metacentric h tation and vorticity	from laminar to turbulent	herever nec	essary.		
Lesson Plan*	14	Topic*	Fundamentals		Source*	Self	

Question : 2*	Prove the intensity	of the pressure	at a point in a fluid at rest is the	same in all the direction	ns.
Lesson Plan*	11	Topic*	Pressure intensity	Source*	Self
Question: 3*	Differentiate betw (i) Gauge pressure (ii) Stress and Pres (iii) Vorticity and C	and Vacuum pr sure	essure		
Lesson Plan*	4	Topic*	Basics	Source*	Self
Question : 4*	Explain the relatio	nship between v	vorticity and rotationality.		<i>h</i>
Lesson Plan*	11	Topic*	Rotational flow	Source*	Self
Part B					
Question: 1*	For a steady flow to equation.	aking place thro	ugh variable cross section duct, de	erive an expression for	the mass continuity
Lesson Plan*	10	Topic*	Continuity equation	Source*	Self
Question : 2*	Consider the followard contaction or irrotational or irrotational or irrotational or irrotation or i	wing steady, inco	ompressible, two-dimensional velo	ocity field: V=(u,v)=x^2 i+	(-2xy-1)j. Is this flow

Lesson Plan*	11	Topic*	Rotational flow	Source*	Fluid Mechanics- Funda
Question : 3*	A horizontal wate 150Kpa respective	r pipe of diamete ely. Calculate vel	er 15cm converges to 7.5cm dia. If ocity at both stations and the flow	the pressure at the two rate of the water.	stations is 400Kpa and
Lesson Plan*	18	Topic*	Bernoulli Equation	Source*	Fluid Mechanics- Funda
Question : 4*	aircraft l, velocity	v, air viscosity μ, riables and the r	nic plane during flight can be cons air density p, and bulk modulus of esisting force and show that the r	f air K. Expess the funct	ional relationship
Lesson Plan*	35	Topic*	Dimensional analysis	Source*	Self
Question : 5	Check whether th velocity potential.		r the stream function ψ=2xy is irro	tational? If so, determin	e the corresponding
Lesson Plan	28	Topic	Steam function	Source	FMHM by RK Bansal
Question: 6			kg/m3 and 30 m/s and leaves at 0 e mass flow rate through the nozzl		
Lesson Plan	10	Topic	Continuity equation	Source	Fluid Mechanics- Funda
Upload Scanned Doct Case of Numerical or for any of the above Mention question number relevant fig / numerical / Max 150 KB	Diagram question er with		Choose files or o	drag here	

I have s	scrutinized th	e question	paper.	There is	no	spelling
mistak	e or any type	of irreleva	nt ques	tion.		

