School of Aeronautics (Neemrana)

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

Approved by Director General of Civil Aviation, Govt. of India, All India Council for Technical Education Ministry of HRD, Govt of India & Affiliated to Rajasthan Technical University, Kota & BTU, Bikaner Rajasthan

Question Paper For Internal Assessment Examination (Theory) - Credit 3 / 36 /

Instructions For Students / FacultyMid Term I (Total 60 Marks, 2 HRS. Syllabus From Beginning Of Session)

- Part A: Total number of questions to be given are five, each carrying 3 marks and are compulsory to attend. There is no choice. They are short answer type questions (Not More Than 25 Words For Both Question & Answer), no objective type or fill in the blanks. Total 15 marks.
- Part B: Total number of questions to be given are six, out of which student has to answer any four. They are long answer type (**Not More Than 50 Words For Question**), each carrying 6 marks. Total 24 marks.
- Part C: Total number of questions to be given are four, out of which student has to answer any three. They are numerical answer type / fully elaborative type (**Not More Than 70 Words For Question)***, each carrying 7 marks. Total 21 marks.

Mid Term II & III (Total 90 Marks, 2.5 HRS. Syllabus From Beginning Of Session)

- Part A: Total number of questions to be given are ten, each carrying 2 marks and are compulsory to attend. There is no choice. They are short answer type questions (Not More Than 25 Words For Both Question & Answer), no objective type or fill in the blanks. Total 20 marks
- Part B: Total number of questions to be given are seven, out of which student has to answer any five. They are long answer type (**Not More Than 50 Words For Question**), each carrying 6 marks. Total 30 marks.
- Part C: Total number of questions to be given are five, out of which student has to answer any four. They are numerical answer type / fully elaborative type (**Not More Than 70 Words For Question)***, each carrying 10 marks. Total 40 marks.
- * LIST OF ELABORATIVE THEORY QUESTION SUBJECTS: 3 MH4 07 Manufacturing Process, 4 AN4 06 Aircraft Materials and Processes (Cr 3), 5 AN4 05 Aircraft System (Cr 3), 6 AN4 05 Avionics-I (Cr 3), 6 MH4 03 Applied Hydraulics & Pneumatics (Cr 3), 6 MH5 11 Principles of Management (Cr 3), 6 MH5 13 Aircraft Electronics System (Cr 3), 7 AN5 12 Maintenance of Airframe and System (Cr 3), 7 AN5 13 Helicopter Theory (Cr 3), 7 AG6 60.1 Human Engineering and Safety (Cr 3), 7 ST 01 Avionics II (Special Theory Subject) (Cr 3), 7 MH5 11 Design of Mechatronics Systems (Cr 3), 7 MH5 12 Robotics and Machine Vision System (Cr 3), 7 MH6 13 Medical Electronics (Cr 3), 7 AN6 60.1 Aircraft Avionic System (Cr 3), 8 AN5 12 Maintenance of Power Plant and System (Cr 3), 8 AN5 13 Unmanned Aerial Vehicles & Systems (UAV) (Cr 3), 8 MH5 13 Product Development & Launching (Cr 3), 8 EC6 60.2 Robotics and control (Cr 3)

FACULTY MEMBERS, PLEASE ENSURE EXCEPT ABOVE LISTED SUBJECTS, NO THEORITICAL ELABORATIVE QUESTION SHOULD BE GIVEN IN PART 'C' OF QUESTION PAPER

Question Paper & Student Details

Mid Term	Mid Term 2	Date of Submission	02/09/2020
Name of Faculty	Mr. Sukumar	Date of Examination	09/09/2020
Course	B.Tech (Aeronautical Engineering)	Semester	SEMESTER : 7
Batch	Combined Batches 12, 13, 14	Subject	7 AN5 - 12 Maintenance of Airframe and System (Cr 3)

COURSE OUTCOMES FOR REFERENCE TO FRAME OUESTION PAPER

(Faculties are required Course Outcome	COURSE OUTCOMES: Upon completion of this course, Students will be able to CO 1: Identify the various airframe constructions and various types of aircraft controls. CO 2: Summarize the various aircraft structure associated materials. CO 3: Interpret the construction and working principle of various aircraft control systems and auxiliary Systems CO 4: Illustrate about the performance basic Inspections procedures. CO 5: Identify the Major Inspections procedures on aircraft. CO 6: Describe about the Periodical inspections procedures on aircraft.			
Email I'd	sukumar@soaneemrana.org Phone No. 790-425-6314			
Student Name		Student Reg No.		

Part A			
Question: 1	Define Skin of an Aircraft.		
4	Airframe Structure	AIRFRAME & AIRCRAFT COMPONENTS by SOA	1
Question : 2	Define Fuselage stations.		

5	Airframe Structure	AIRFRAME & AIRCRAFT COMPONENTS by SOA	1
Question: 3	Define Adverse yaw effect.		
7	Aircraft Controls	AIRFRAME & AIRCRAFT COMPONENTS by SOA	2
Question : 4	Define Phosphating Processes		
11	Airframe Structure	AIRFRAME & AIRCRAFT COMPONENTS by SOA	2
Question : 5	What is the application of Pulleys in	n the control system.	
13	Control System	AIRFRAME & AIRCRAFT COMPONENTS by SOA	3
Question: 6	Define Steering Damper.		
16	Landing Gear	AIRFRAME & AIRCRAFT COMPONENTS by SOA	3
Question: 7	Define Bungee Cord.		
17	Landing Gear	AIRFRAME & AIRCRAFT COMPONENTS by SOA	3
Question: 8	Define Purpose of oxygen system.		
18	Aircraft Auxiliary system	AIRFRAME & AIRCRAFT COMPONENTS by SOA	3
Question: 9	List the different types Ice Prevent	ion methods used in aviation industries.	
19	Anti Icing System	AIRFRAME & AIRCRAFT COMPONENTS by SOA	3
Question: 10	List the Precautions to be followed during Fuel Transfer.		
20	Fuel System	AIRFRAME & AIRCRAFT COMPONENTS by SOA	3
Part B			
Question: 1	Differentiate between Tubular Stru	cture and Braced Structure.	
3	Airframe Structure	AIRFRAME & AIRCRAFT COMPONENTS by SOA	1
Question : 2	Elaborate in detail about the Leading and Trailing edge flaps.		
7	Aircraft Control System	AIRFRAME & AIRCRAFT COMPONENTS by SOA	2
Question: 3	Elaborate in detail about the type of	of paints used in aircraft structure.	
11	Aircraft Structure	AIRFRAME & AIRCRAFT COMPONENTS by SOA	2
Question : 4	Demonstrate the construction and	working of Mechanical flight control surfaces.	
13	Control System	AIRFRAME & AIRCRAFT COMPONENTS by SOA	3
Question : 5	Examine about the different types	of Hydraulic Pumps.	
14	Control System	AIRFRAME & AIRCRAFT COMPONENTS by SOA	3
Question: 6	Elaborate in detail about the Brake Actuating Systems.		
17	Brake System	AIRFRAME & AIRCRAFT COMPONENTS by SOA	3
Question: 7	Summarize about the Continuous F	Flow Oxygen Systems.	
18	Aircraft Auxiliary system	AIRFRAME & AIRCRAFT COMPONENTS by SOA	3
Part C			
Question: 1	Explain about the Construction Ser	ni-Moncoque Structure with neat sketch.	

5	Semi-Moncoque Structure	AIRFRAME & AIRCRAFT COMPONENTS by SOA	1
Question: 2	Demonstrate in detail about the Properties and uses of different type of aluminium alloys.		
9	Airframe Materials	AIRFRAME & AIRCRAFT COMPONENTS by SOA	2
Question : 3	Elaborate in detail about the Landi	ng-Gear Components and its functions.	
16	Landing-Gear	AIRFRAME & AIRCRAFT COMPONENTS by SOA	3
Question : 4	Elaborate in detail about the Thermal (Hot Gas) De-Icing Systems.		
19	De-Icing Systems	AIRFRAME & AIRCRAFT COMPONENTS by SOA 3	
Question : 5	Demonstrate in detail about the fixed fire extinguisher systems in an aircraft.		
20	Aircraft Auxiliary system	AIRFRAME & AIRCRAFT COMPONENTS by SOA	3
Upload Scanned Document In Case of Numerical or Diagram For Any of The Above Questions. (Mention question number with relevant fig / numerical / equations. Max 150 KB)			
I have scrutinized the question paper. There is no spelling mistake or any type of irrelevant question.		SEN	

The message has been sent from 157.47.156.46 (India) at 2020-09-04 20:59:05 on Firefox 80.0 Entry ID: 36

School of Aeronautics (Neemrana)

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

Approved by Director General of Civil Aviation, Govt. of India, All India Council for Technical Education Ministry of HRD, Govt of India & Affiliated to Rajasthan Technical University, Kota & BTU, Bikaner Rajasthan

Question Paper For Internal Assessment Examination (Theory) - Credit 3 / 38 /

Instructions For Students / FacultyMid Term I (Total 60 Marks, 2 HRS. Syllabus From Beginning Of Session)

- Part A: Total number of questions to be given are five, each carrying 3 marks and are compulsory to attend. There is no choice. They are short answer type questions (Not More Than 25 Words For Both Question & Answer), no objective type or fill in the blanks. Total 15 marks.
- Part B: Total number of questions to be given are six, out of which student has to answer any four. They are long answer type (**Not More Than 50 Words For Question**), each carrying 6 marks. Total 24 marks.
- Part C: Total number of questions to be given are four, out of which student has to answer any three. They are numerical answer type / fully elaborative type (**Not More Than 70 Words For Question)***, each carrying 7 marks. Total 21 marks.

Mid Term II & III (Total 90 Marks, 2.5 HRS. Syllabus From Beginning Of Session)

- Part A: Total number of questions to be given are ten, each carrying 2 marks and are compulsory to attend. There is no choice. They are short answer type questions (Not More Than 25 Words For Both Question & Answer), no objective type or fill in the blanks. Total 20 marks
- Part B: Total number of questions to be given are seven, out of which student has to answer any five. They are long answer type (**Not More Than 50 Words For Question**), each carrying 6 marks. Total 30 marks.
- Part C: Total number of questions to be given are five, out of which student has to answer any four. They are numerical answer type / fully elaborative type (**Not More Than 70 Words For Question)***, each carrying 10 marks. Total 40 marks.
- * LIST OF ELABORATIVE THEORY QUESTION SUBJECTS: 3 MH4 07 Manufacturing Process, 4 AN4 06 Aircraft Materials and Processes (Cr 3), 5 AN4 05 Aircraft System (Cr 3), 6 AN4 05 Avionics-I (Cr 3), 6 MH4 03 Applied Hydraulics & Pneumatics (Cr 3), 6 MH5 11 Principles of Management (Cr 3), 6 MH5 13 Aircraft Electronics System (Cr 3), 7 AN5 12 Maintenance of Airframe and System (Cr 3), 7 AN5 13 Helicopter Theory (Cr 3), 7 AG6 60.1 Human Engineering and Safety (Cr 3), 7 ST 01 Avionics II (Special Theory Subject) (Cr 3), 7 MH5 11 Design of Mechatronics Systems (Cr 3), 7 MH5 12 Robotics and Machine Vision System (Cr 3), 7 MH6 13 Medical Electronics (Cr 3), 7 AN6 60.1 Aircraft Avionic System (Cr 3), 8 AN5 12 Maintenance of Power Plant and System (Cr 3), 8 AN5 13 Unmanned Aerial Vehicles & Systems (UAV) (Cr 3), 8 MH5 13 Product Development & Launching (Cr 3), 8 EC6 60.2 Robotics and control (Cr 3)

FACULTY MEMBERS, PLEASE ENSURE EXCEPT ABOVE LISTED SUBJECTS, NO THEORITICAL ELABORATIVE QUESTION SHOULD BE GIVEN IN PART 'C' OF QUESTION PAPER

Question Paper & Student Details

Mid Term	Mid Term 2	Date of Submission	03/09/2020
Name of Faculty	Mr. Maris Brightson	Date of Examination	09/09/2020
Course	B.Tech (Aeronautical Engineering)	Semester	SEMESTER: 7
Batch	Thirteenth (13)	Subject	7 AN5 - 13 Helicopter Theory (Cr 3)

COURSE OUTCOMES FOR REFERENCE TO FRAME QUESTION PAPER

(Faculties are required to mention relevant Course Outcome number against the respective question in QP)

Course Outcome	COURSE OUTCOMES: Upon completion of this course, Students will be able to CO1: Identify the various theory of flight behind the helicopter. CO2: Analysis the Aerodynamics calculation of Rotor blade. CO3: Illustrate the stability and control characteristics of Helicopter. CO4: Perform and control the Rotor vibration. CO5: Explain the stability characteristics of a helicopter. CO6: Demonstrates the role of rotor vibrations in helicopter structural design.		
Email I'd	marisbrightson@soaneemrana.org Phone No. 805-667-7643		
Student Name		Student Reg No.	

Part A				
Question : 1	Define Power Loading.			
5	Theory of Flight Principles of Helicopter Flight - W J Wagtendonk 1			
Question : 2	Define Blade Loading.			
5	Theory of Flight	Principles of Helicopter Flight - W J Wagtendonk	1	

Question : 3	Define Induced Flow.		
6	Aerodynamics	Principles of Helicopter Flight - W J Wagtendonk	2
Question : 4	Define Induced Power.		
8	Flight Performance	Principles of Helicopter Flight - W J Wagtendonk	1
Question : 5	Define Parasite Drag? How it is rela	ated to Parasite Power.	
7	Aerodynamics	Principles of Helicopter Flight - W J Wagtendonk	2
Question : 6	Define Available Power.		
8	Flight Performance	Principles of Helicopter Flight - W J Wagtendonk	2
Question: 7	Define the following (1) Range (2) Endurance		
16	Flight Performance	Principles of Helicopter Flight - W J Wagtendonk	2
Question : 8	Define Angle of Climb.		
17	Flight Performance	Principles of Helicopter Flight - W J Wagtendonk	1
Question : 9	Define Trim Condition for Aircrafts.		
22	Stability and Control	Principles of Helicopter Flight - W J Wagtendonk	5
Question: 10	Define Cross Coupling.		
24	Stability and Control	Principles of Helicopter Flight - W J Wagtendonk	5
art B			
Question: 1	With neat illustrative diagram explain Gyroscopic Precession.		
14	Aerodynamics	Principles of Helicopter Flight - W J Wagtendonk	2
Question : 2	With neat illustrative diagram explain Translating Tendency.		
11	Aerodynamics	Principles of Helicopter Flight - W J Wagtendonk	2
Question : 3	With neat illustrative diagrams exp	lain Range and the factors affecting Range.	
16	Flight Performance	Principles of Helicopter Flight - W J Wagtendonk	2
Question : 4	With neat illustrative diagram expl	lain the working of Turboshaft Engines.	
20	Flight Performance	Principles of Helicopter Flight - W J Wagtendonk	1
Question : 5	With neat illustrative diagrams exp	lain Climbing Performance of Helicopters.	
17	Flight Performance	Principles of Helicopter Flight - W J Wagtendonk	2
Question : 6	With neat illustrative diagrams exp	lain Longitudinal Stability of Helicopters.	
23	Stability and Control	Principles of Helicopter Flight - W J Wagtendonk	5
Question : 7	With neat illustrative diagrams explain Directional Stability of Helicopters.		
24	Stability and Control	Principles of Helicopter Flight - W J Wagtendonk	5
Part C			
Question: 1	With neat illustrative diagrams explain Retreating Blade Stall.		

Question: 2	With neat illustrative diagram explain the Power Required to perform Steady Level Flight for Helicopters.			
8	Flight Performance	Principles of Helicopter Flight - W J Wagtendonk	2	
Question: 3	With neat illustrative diagrams explain Autorotation.			
21	Flight Performance	Principles of Helicopter Flight - W J Wagtendonk	2	
Question: 4	With neat illustrative diagrams explain the Aerodynamics of Forward Flight and Vertical Flight in Helicopters.			
13	Aerodynamics	Principles of Helicopter Flight - W J Wagtendonk		
Question : 5	With neat illustrative diagrams explain (1) Translational Lift (2) Transverse Flow Effect			
11	Aerodynamics	Principles of Helicopter Flight - W J Wagtendonk 2		
Upload Scanned Document In Case of Numerical or Diagram For Any of The Above Questions. (Mention question number with relevant fig / numerical / equations. Max 150 KB)				
I have scrutinized the question paper. There is no spelling mistake or any type of irrelevant question.		Mans		

The message has been sent from 157.47.135.118 (India) at 2020-09-04 21:15:23 on Firefox 80.0 Entry ID: 38