School of Aeronautics (Neemrana)

Question Paper For Back / Re-back Internal Assessment Examination (Theory) - Old Scheme i.e 2012 Syllabus

Instructions For Students / Faculty

Back / Re-back Internal Examination (Total 60 Marks, 2 Hrs, Syllabus From Beginning of The Session)

Total number of questions to be given are 10, each carrying 10 marks and it is compulsory to attend 2 questions from Part A and 4 questions from Part B. There is a choice of two questions out of four in part A and 4 questions out of 6 in Part B. Part A will be theoretical or derivation type (Not More Than 70 Words For Question). Part B will be fully numerically oriented questions (Not More Than 70 Words For Question), except for the list of subjects given below. No objective type or fill in the blanks shall be given, but subpart of question can be given for both Part A & B.

* LIST OF ELABORATIVE THEORY QUESTION SUBJECTS: Aircraft Materials, Aircraft System, Aircraft Rules & Regulation-I, Mechanics of Composite Materials, Aircraft Design, Aircraft Rules & Regulation-II, Avionics-I, Helicopter Theory, Maintenance of Airframe and System Design, Avionics-II, Airlines and Airport Management, Maintenance of Power Plant & Systems

FACULTY MEMBERS, PLEASE ENSURE EXCEPT ABOVE LISTED SUBJECTS, NO THEORITICAL ELABORATIVE QUESTION SHOULD BE GIVEN IN PART 'B' OF QUESTION PAPER

STUDENT IS ALLOWED TO ENTER LATE NOT MORE THAN 15 MIN AFTER STARTING OF EXAM, AND MAY LEAVE THE EXAM HALL ON EXPIRY OF ATLEAST OF 1 Hr FROM THE STARTING TIME OF EXAMINATION

Name of Faculty*		Ashok Bhatia		Date of Submission of QP		27/11/2020		
Subject*	4AN4 - Theory of Machines (Old)				Date of Examination*		02/12/2020	
Email Id of Faculty:* asho		ashok	bhatia@soaneemrana.org		Course* B.Tech (Aeronautical Eng		nautical Engineering)	•
Phone Number of Faculty*			798 815 8760		Semester*	Semester : 4		•
Student Name	3				Student Reg I	No.		

Question Paper & Student Details

Part A

Question : 1*	Explain the	Explain the terms : 1. Lower pair, 2. Higher pair, 3. Kinematic chain, and 4. Inversion								
					12					
Lesson Plan*	3	Topic*	Simple Mechanisms	Source*	Theory of Machine by R					

Question : 2*	State and prove th	ie law of gearing	. Show that involute profile satisfi	es the conditions for co	rrect gearing.				
Lesson Plan*	24	Topic*	Gears	Source*	Theory of Machine by R				
Question : 3*	Derive from first p Explain the effect	rinciples an exp of the gyroscopio	ression for the effort required to r c couple on the reaction of the fou	aise a load with a screv ir wheels of a vehicle ne	v jack taking friction into egotiating a curve				
Lesson Plan*	17	Topic*	Gyroscopic Couple	Source*	Theory of Machine by R				
Question : 4*	A four cylinder vertical engine has cranks 150 mm long. The planes of rotation of the first, second and fourth cranks are 400 mm, 200 mm and 200 mm respectively from the third crank and their reciprocating masses are 50 kg, 60 kg and 50 kg respectively. Find the mass of the reciprocating parts for the third cylinder and the relative angular positions of the cranks in order that the engine may be in complete primary balance.								
Lesson Plan*	37	Topic*	Reciprocating Masses	Source*	Theory of Machine by R				
Part B									
Question : 1*	Sketch and explain	n the various inv	ersions of a slider crank chain.						
Lesson Plan*	5	Topic*	Simple Mechanisms	Source*	Theory of Machine by R				
Question : 2*	In a four bar chair clockwise, while th link CD when angl	ie link CD = 80 m	ed and is 150 mm long. The crank im oscillates about D. BC and AD a	AB is 40 mm long and r are of equal length. Finc	otates at 120 r.p.m. I the angular velocity of				

Lesson Plan*	9	Topic*	Relative Velocity	Source*	Theory of Machine by R					
Question : 3*	Two gear wheels mesh externally and are to give a velocity ratio of 3 to 1. The teeth are of involute form ; module = 6 mm, addendum = one module, pressure angle = 20°. The pinion rotates at 90 r.p.m. Determine : 1. The number of teeth on the pinion to avoid interference on it and the corresponding number of teeth on the wheel, 2. The length of path and arc of contact, 3. The number of pairs of teeth in contact, and 4. The maximum velocity of sliding.									
Lesson Plan*	25	Topic*	Gears	Source*	Theory of Machine by R					
Question : 4*	150 r.p.m. in the a B. If the	inticlockwise dir	carries two gears A and B having 3 ection about the centre of the gea es 300 r.p.m. in the clockwise dire	r A which is fixed, deter	mine the speed of gear					
Lesson Plan*	28	Topic*	Gear Trains	Source*	Theory of Machine by R					
Question : 5	A, B, C and D are four masses carried by a rotating shaft at radii 100, 125, 200 and 150 mm respectively. The planes in which the masses revolve are spaced 600 mm apart and the mass of B, C and D are 10 kg, 5 kg, and 4 kg respectively. Find the required mass A and the relative angular settings of the four masses so that the shaft shall be in complete balance.									
Lesson Plan	33	Торіс	Balancing of Rotating Masses	Source	Theory of Machine by R					
Question : 6	A single dry plate clutch transmits 7.5 kW at 900 r.p.m. The axial pressure is limited to 0.07 N/mm2 . If the coefficient of friction is 0.25, find 1. Mean radius and face width of the friction lining assuming the ratio of the mean radius to the face width as 4, and 2. Outer and inner radii of the clutch plate.									
Lesson Plan	19	Торіс	Clutch	Source	Theory of Machine by R					
Upload Scanned Doct Case of Numerical or for any of the above Mention question number relevant fig / numerical / Max 150 KB	Diagram question er with		Choose files or	drag here						

I have scrutinized the question paper. There is no spelling mistake or any type of irrelevant question.

School of Aeronautics (Neemrana)

Question Paper For Back / Re-back Internal Assessment Examination (Theory) - Old Scheme i.e 2012 Syllabus

Instructions For Students / Faculty

Back / Re-back Internal Examination (Total 60 Marks, 2 Hrs, Syllabus From Beginning of The Session)

Total number of questions to be given are 10, each carrying 10 marks and it is compulsory to attend 2 questions from Part A and 4 questions from Part B. There is a choice of two questions out of four in part A and 4 questions out of 6 in Part B. Part A will be theoretical or derivation type (Not More Than 70 Words For Question). Part B will be fully numerically oriented questions (Not More Than 70 Words For Question), except for the list of subjects given below. No objective type or fill in the blanks shall be given, but subpart of question can be given for both Part A & B.

* LIST OF ELABORATIVE THEORY QUESTION SUBJECTS: Aircraft Materials, Aircraft System, Aircraft Rules & Regulation-I, Mechanics of Composite Materials, Aircraft Design, Aircraft Rules & Regulation-II, Avionics-I, Helicopter Theory, Maintenance of Airframe and System Design, Avionics-II, Airlines and Airport Management, Maintenance of Power Plant & Systems

FACULTY MEMBERS, PLEASE ENSURE EXCEPT ABOVE LISTED SUBJECTS, NO THEORITICAL ELABORATIVE QUESTION SHOULD BE GIVEN IN PART 'B' OF QUESTION PAPER

STUDENT IS ALLOWED TO ENTER LATE NOT MORE THAN 15 MIN AFTER STARTING OF EXAM, AND MAY LEAVE THE EXAM HALL ON EXPIRY OF ATLEAST OF 1 Hr FROM THE STARTING TIME OF EXAMINATION

Name of Faculty*		Deepak Tomar		Date of Submission of QP		28/11/2020		
Subject*	ubject* 4AN2-01– Digital Science (New) (Credit-2)			•	Date of Exam	ination*	02/12/2020	
Email Id of Faculty:* deep		deepa	deepaktomar@soaneemrana.org		Course*	B.Tech (Aeronautical Engineering)		•
Phone Number of Faculty*		965 454 4096		Semester*	Semester : 4		•	
Student Name	2				Student Reg	No.		

Question Paper & Student Details

Part A

Question : 1*	Build basic	gates AND, NOT, OR	Rusing NOR gate.		
Lesson Plan*	5	Topic <mark>*</mark>	Basic gates	Source*	Digital Electronics Princ

Question : 2*	Explain SOP form	in detail conside	ring 3 variables A,B & C with func	tion(Output) as A+BC'.	
Lesson Plan*	10	Topic*	SOP form	Source*	Digital Electronics Princ
Question : 3*	What are positive	and negative log	gic? Explain the working of 2 input	positive logic OR gate u	ising a diode circuit.
Lesson Plan*	6	Topic*	Positive and negative logic	Source*	Digital Electronics Princ
Question : 4*	Write short notes a) Half Adder b) Fu	on ıll Adder			
Lesson Plan*	13	Topic*	Adder	Source*	Digital Electronics Princ
Part B					
Question : 1*	What is a multiple	xer? Draw circui	t diagram of 8: 1 multiplexer. Expl	lain its working in brief.	
Lesson Plan*	14	Topic*	Multiplexer	Source*	Digital Electronics Princ
Question : 2*	A. Convert (444.49 B. Convert (345.29	9) base 10 into c 12) base 8 into c	octal. lecimal.		

Lesson Plan*	4	Topic*	Conversion	Source*	Digital Electronics Princ
Question : 3*	Discuss K-Map for	two, three & fou	ır variable input and also elaborat	te rules to simplify a Boo	blean expression.
Lesson Plan*	8	Topic*	К-Мар	Source*	Digital Electronics Princ
Question : 4*	What is demultipl	exer? Explain the	e working of a 1:4 demultiplexer w	ith a logic diagram.	1,
Lesson Plan*	15	Topic*	Demultiplexer	Source*	Digital Electronics Princ
Question : 5	Explain the workin	ng of JK flip-flop.	How can you convert the flip-flop i	nto a D flip-flop?	//
Lesson Plan	16	Торіс	Flip-flop	Source	Digital Electronics Princ
Question : 6	Explain EMC & EM	l in detail.			
Lesson Plan	25	Торіс	EMC & HIRF	Source	Digital Electronics Princ
Upload Scanned Document In Case of Numerical or Diagram for any of the above question Mention question number with relevant fig / numerical / equations. Max 150 KB			Choose files or o	drag here	

I have scrutinized the question paper. There is no spelling mistake or any type of irrelevant question.

V Υ X